• Title/Summary/Keyword: alkaline phosphatase.

Search Result 1,625, Processing Time 0.029 seconds

Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity

  • Kim, Suji;Shin, Mee-Young;Son, Kun-Ho;Sohn, Ho-Yong;Lim, Jae-Hwan;Lee, Jong-Hwa;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.194-203
    • /
    • 2014
  • Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within $0{\sim}10{\mu}g/mL$ during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

SPARING EFFECTS OF COBALT AND NICKEL ON ZINC NUTRITION IN PIGS

  • Chung, A.S.;Faltin, E.C.;Grummer, R.H.;Hoekstra, W.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.89-98
    • /
    • 1988
  • Three experiments were conducted to determine whether cobalt (Co) or nickel (Ni) could prevent zinc (Zn) deficiency signs in pigs fed a high calcium (Ca) corn-soybean diet. The basal diet contained 1.3% Ca, .93% phytic acid and means of 34 to 48 ppm Zn. After weanling, pigs in experiment I were fed the basal diet for 9 weeks, and was found that 50 ppm Co or Ni for 5 weeks increased average daily weight gain (ADG) and reversed skin lesions toward normal. These effects were similar to those of 100 ppm supplemental Zn. The Zn content and alkaline phosphatase activity of serum from pigs supplemented with Co or Ni were higher at 2 weeks and 4 weeks (P<.05) than those of the basal group. Zn content of bone, liver and kidney, and alkaline phosphatase activity in bone were increase after 5 weeks of supplementation with Co or Ni. In experiments 2 and 3, addition of 54 ppm and 27 ppm of either Co or Ni increased (P<.05) ADG and decreased incidence of skin lesions except in one group supplemented with 27 ppm Ni. Supplemental Co or Ni increased Zn in serum and alkaline phosphatase activity in serum and bone in both experiments. Over all experiments, supplemental Co or Ni decreased Zn deficiency signs in the following order of effectiveness: 54 ppm Co, 54 ppm Ni, 27 ppm Co and 27 ppm Ni. The alleviation of signs of Zn deficiency by Co or Ni may have been the result of increased availability of dietary Zn.

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Effects of Amino Acids, Carbohydrates and Phosphorus Sources on Growth and Alkaline Phosphatase Activity of the Marine Cyanobacterium Anabaena sp. Strain CA

  • Singh, Jeet Bahadur;Vyas, Deepak;Kumar, Har Darshan
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 1997
  • Alkaline phosphatase (APase) was found to be inducible in Anabaena sp. strain CA Growth was less than control in presence of most amino acids except glycine and serine, but most amino acids enhanced APase activity. Highest APase activity was recorded in tyrosine supplemented culture followed by hydroxyproline, cystein, valine and glutamic acid. Threonine supplemented material showed lowest APase level (1.8 nmol/mg protein/min). Lactose, glucose, sodium pyruvate and succinate stimulated growth but not APase activity. APase activity was high in the presence of sucrose, mellibiose, mannitol, arabinose, maltose and sorbose, even though the growth in these supplements was less than in control. Organic phosphate sources supported good growth of the organism. Best growth occurred in presence of inorganic phosphate, adenosine diphosphate, fructose 1,6-diphosphate or ribulose 1,5-diphosphate, followed by other phosphorus sources tested. APase activity in presence of any of the organic phosphate sources was 3 to 5 fold low as compared to phosphate limited culture. Also, there was no APase activity in cultures grown on inorganic phosphate. These data indicate that most amino acids and a few carbohydrates (sucrose, mellibiose, arabinose and sorbose) are suitable for APase production. Lactose, glucose, pyruvate or succinate may be used as a carbon source during photoheterotrophic growth of the cyanobacterium. Glycine and serine are preferred nitrogen sources for its growth. Phosphate repressible APase activity has been found in Anabaena sp. strain CA.

  • PDF

Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells

  • Seo, Hyun-Ju;Cho, Young-Eun;Kim, Tae-Wan;Shin, Hong-In;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.356-361
    • /
    • 2010
  • Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 1, 3, 15, 25 uM) along with a normal osteogenic medium (OSM) as control for 1, 5, 10 days. As measured by MTT assay for mitochondrial metabolic activity, cell proliferation was stimulated even at low zinc treatment (1-3 ${\mu}M$) compared to OSM, and it was stimulated in a zinc concentration-dependent manner during 5 and 10 days, with the most pronounced effect at 15 and 25 uM Zn. Cellular (synthesized) alkaline phosphatase (ALP) activity was increased in a zinc concentration-dependent manner, so did medium (secreted) ALP activity. Cellular collagen concentration was increased by zinc as time went by, therefore with the maximum zinc stimulatory effect in 10 days, and medium collagen concentration showed the same pattern even on 1 and 5 day. This zinc stimulatory effect of collagen synthesis was observed in cell matrix collagen staining. The study results imply that zinc can increase osteogenic effect by stimulating cell proliferation, ALP activity and collagen synthesis in osteoblastic cells.

A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL (지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구)

  • Lee, Eui-Seok;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells

  • Kim, Jwa-Young;Choi, Je-Yong;Jeong, Jae-Hwan;Jang, Eun-Sik;Kim, An-Sook;Kim, Seong-Gon;Kwon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.52-56
    • /
    • 2010
  • Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.

Cloning, Expression, and Characterization of a Hyperalkaline Phosphatase from the Thermophilic Bacterium Thermus sp. T351

  • Choi Jeong-Jin;Park Jong-Woo;Shim Hye-Kyung;Lee Suk-Chan;Kwon Moo-Sik;Yang Joo-Sung;Hwang Heon;Kwon Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.272-279
    • /
    • 2006
  • The gene encoding Thermus sp. T351 alkaline phosphatase (T351 APase) was cloned and sequenced. The gene consisted of 1,503 bp coding for a protein with 500 amino acid residues including a signal peptide. The deduced amino acid sequence of T351 APase showed relatively low similarity to other Thermus APases. The T351 APase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21 (DE3). The expressed enzyme was purified by heat treatment, and $UNO^{TM}$ Q and $HiTrap^{TM}$ Heparin HP column chromatographies. The purified enzyme exhibited high activity at extremely alkaline pHs, reaching a maximum at pH 12.0. The optimum temperature of the enzyme was $80^{\circ}C$, and the half-life at $85^{\circ}C$ was approximately 103 min. The enzyme activity was found to be dependent on metal ions: the addition of $Mg^{2+}$ and $CO^{2+}$ increased the activity, whereas EDTA inhibited it. With p-nitrophenyl phosphate as the substrate, T351 APase had a Michaelis constant ($K_{m}$) of $3.9{\times}10^{-5}M$. The enzyme catalyzed the hydrolysis of a wide variety of phosphorylated compounds.

Different Expression of Extracellular Matrix Genes: Primary vs. Recurrent Disc Herniation

  • Kuh, Sung-Uk;Kwon, Young-Min;Chin, Dong-Kyu;Kim, Keun-Su;Jin, Byung-Ho;Cho, Yong-Eun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.26-29
    • /
    • 2010
  • Objective: Recurrent lumbar disc herniation has been reported to occur in 5% to 15% of surgically treated primary lumbar disc herniation cases. We investigated the molecular biologic characteristics of primary herniated discs and recurrent discs to see whether the recurrent discs has the similar biological features with primary herniated discs. Methods: Primary hemiated disc and recurrent disc cells were obtained by discectomy of lumbar disc patients and cells were isolated and then taken through monolayer cultures. We compared chondrogenic and osteogenic mRNA gene expression, and western blot between the two groups. Results: The mRNA gene expression of recurrent disc cells were increased 1.47* times for aggrecan, 1.38 times for type I collagen, 2.04 times for type II collagen, 1.22 times for both Sox-9 and osteocalcin, and 1.31 times for alkaline phosphatase, respectively, compared with the primary herniated lumbar disc cells (*indicates p < 0.05). Westem blot results for each aggrecan, type I collagen, type II collagen, Sox-9, osteocalcin, and alkaline phosphatase were similar between the primary herniated disc cells and recurrent disc cells. Conclusion: These results indicate that the recurrent disc cells have similar chondrogenic and osteogenic gene expression compared to primary herniated disc cells. Therefore, we assumed that the regeneration of remaining discs could fill the previous discectomy space and also it could be one of the factors for disc recurrence especially in the molecular biologic field.

Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Lim, Jong-Soo;Kim, Hong-Seok;Kang, Il-Byeong;Jeong, Dana;Song, Kwang-Young;Kim, Hyunsook;Kim, Kwang-Yup;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.194-197
    • /
    • 2016
  • The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk.