• 제목/요약/키워드: alkaline decomposition

검색결과 44건 처리시간 0.017초

Effect of Solidified/Stabilized Sewage Sludge using Neutral Solidifying Chemical Agent and Alkaline Agent as Landfill Cover on Decomposition of Organic Matter in Lysimeter (중성계 및 알칼리성 고화재를 이용한 고화하수슬러지의 복토재가 모형매립조 내 유기물 분해에 미치는 영향)

  • Kim, Hye-Jin;Park, Jin-Kyu;Song, Sang-Hoon;Lee, Nam-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제30권8호
    • /
    • pp.768-774
    • /
    • 2008
  • To evaluate the effect of the solidified/stabilized sewage sludge on landfill sites, lysimeter tests were conducted. Lysimeters (LR1, LR2, and LR3) were filled with the material(Compost : Fodder : Sand = 10 : 10 : 80) and covered with different types of the cover soils, the G solidified sludge produced from the neutral solidifying chemical agent(LR1), the A solidified sludge produced from the alkali solidifying chemical agent(LR2), and the weathered granite soil(LR3). Those lysimeters were kept at the temperature controlled room with 30 $\pm$ 2$^{\circ}C$ for about 450 days. As the results, it was appeared LR2 > LR1 > LR3 that total gas production rate(L), gas production rate(L/VS(kg)) and cumulative gas(CO$_2$ + CH$_4$) production. There were not significant differences at decrease of the COD$_{Cr}$ in the leachate from LR1 and LR3. Thus, it had been shown that the use of the G solidified sludge as cover soil did not affect the COD$_{Cr}$ in the leachate. The COD$_{Cr}$ from LR2 had been increased since around 250 days because solidified/stabilized sewage sludge became re-slurry. T-N and T-P from LR3 also were higher than LR1 and LR2. Also were, the use of the solidified/stabilized sewage sludge as a cover soil, therefore, did not affect the T-N and T-Pconcentrations in the leachate.

Physicochemical Properties of Organo­Smectites Modified by HDTMA, BDTDA, and CP (HDTMA­, BDTDA­ 및 CP­스멕타이트의 물리­화학적 특성)

  • 고상모;홍석정;송민섭
    • Journal of the Mineralogical Society of Korea
    • /
    • 제16권4호
    • /
    • pp.295-305
    • /
    • 2003
  • This study aims to provide the physicochemical properties of three kinds of organo­smectites which can be diversely used in industries. Some properties of them were compared with Na­smectite. Three kinds of organo­smectites such as Hexadecyltrimethylammonium(HDTMA), Benzyldimethyltetradecylammonium(BDTDA), and Cetylpyridinium(CP) exchanged smectites were manufactured for this study. Three types of organo­smectites showed the alkaline character(pH 9), very low swelling property and viscosity, and a fast flocculation behavior because of strong hydrophobic property in contrast to hydrophilic Na­smectite. Three organo­smectites showed the strong interlayer expansion with basal spacing from $19\AA$ to $23\AA$ compared with the Na­smectite of about 12 $\AA$. Organic cations such as HDTMA, BDTDA, and CP exchanged into smectite were completely decomposed in the temperature range from $250^{\circ}C$ to $400^{\circ}C$. Generally, three organo­smectites showed the similar mineralogical, physicochemical and thermal properties. But their properties are quite different from Na­smectite. Considering economically, CP exchanged smectite would be used for the diverse utilization field in the future time.

A study on preparation of luminol reagents for crime scene investigation (범죄현장 조사용 루미놀 시약의 제조법에 관한 연구)

  • Lim, Seung;Kim, Jung-mok;Jung, Ju Yeon;Lim, Si-Keun
    • Analytical Science and Technology
    • /
    • 제31권1호
    • /
    • pp.47-56
    • /
    • 2018
  • Finding the blood left at a crime scene is very important to reconstruct or solve a criminal case. Although numerous reagents have been developed for use at crime scenes, luminol is the most representative. Bluestar Forensic has been used in recent years, but is expensive and cannot be stored after preparation. This study aims to develop a new luminol reagent that can be stored for a long period of time while maintaining the chemiluminescence intensity at the level of Bluestar Forensic. Because luminol dissolves well in aqueous alkaline solutions, the use of sodium hydroxide in the preparation of luminol reagents can promote the decomposition of hydrogen peroxide. Magnesium sulfate, sodium silicate, and potassium triphosphate have been used as hydrogen peroxide stabilizers. The effects of the addition of these substances on the chemiluminescence emission intensity and the storage period of the luminol reagents were confirmed. The addition of a hydrogen peroxide stabilizer was shown to have no significant affect on the chemiluminescence emissions intensity or stabilized pH of the luminol reagent during storage. It also greatly increases the shelf life of the reagents. The use of magnesium sulfate as a hydrogen peroxide stabilizer is the most appropriate. When sodium perborate is used instead of hydrogen peroxide as an oxidizing agent, there is no significant change in the sensitivity and chemiluminescence emissions intensity, but the storage period is shortened. However, after the reaction with blood, the pH of the mixed solution does not increase significantly, and is judged to be more suitable than a reagent made of hydrogen peroxide.

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제16권1호
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF