• Title/Summary/Keyword: alkali ion

Search Result 279, Processing Time 0.035 seconds

Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer (평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구)

  • Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.543-553
    • /
    • 1992
  • Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

  • PDF

Square Wave Voltammetry in Cathode Ray Tube Glass Melt Containing Different Polyvalent Ions (서로 다른 다가이온을 함유한 음극선관 전면유리 용융체의 Square Wave Voltammetry)

  • Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.297-302
    • /
    • 2007
  • With aids of square wave voltammetry (SWV) the redox behavior for various combination of polyvalent ions (Sb+Fe, Sb+Zn, Sb+Ce+Ti+Zn) was investigated in alkali-alkaline earth-silica CRT (Cathode Ray Tube) glass melts. The current-potential curve so called voltammogram was produced at temperature range of 1400 to $1000^{\circ}C$ under the scanned potential between 0 and -800 mV at 100 Hz. In the case of the Sb+Fe and Sb+Zn doped melts, peak for $Sb^{3+}/Sb^0$ shown voltammogram was shifted to negative direction comparing to the only Sb doped melts. However, according to voltammogram of Sb+Ce+Ti+Zn doped melt, Ti and Ce except Zn had hardly any influence on the redox reaction of Sb. Based on the temperature dependence of the peak potential, standard enthalpy (${\Delta}H^0$) and standard entropy (${\Delta}S^0$) for the reduction of $Fe^{3+}$ to $Fe^{2+}$, $Sb^{3+}$ to $Sb^0$, $Zn^{2+}$ to $Zn^0$ and $Ti^{2+}$ to $Ti^0$ in each polyvalent ion combination of CRT glass melts were calculated.

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

Effect of Aluminum Potassium Sulfate Addition on the Color Change in Caesalpinia Sappan Dyeing by Rice Straw Ash Solution (볏짚 잿물 매염에 의한 소목 염색에서 명반 첨가가 색상변화에 미치는 영향)

  • Seo Hee-Sung;Jeon Dong-Won;Kim Jeon-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1465-1474
    • /
    • 2005
  • The primary purpose of this study is to investigate the differences in the characteristics of the mordants, synthetic aluminum mordants and ash solutions as natural mordants, used in Caesalpinia sappan dyeing. By introducing aluminum potassium sulfate in the ash solutions, the behavior of the aluminum in the ash solutions were observed. In the rice straw ash solutions, adjusted to the levels of pH6 and pH10, the aluminum potassium sulfate was introduced to achieve various concentration levels. From the analysis of the ash solution of pull, $K^+$ and $Na^+$ ion concentrations were found to be extremely high, while $Al^+$ ion concentration was 0. The color development in the Caesalpinia sappan dyeing by ash solution mordanting was found to be mainly governed not by the mordanting actions of the metallic ions but by those of alkali components. In the case of cotton, the application of pH10 ash solution promoted reddish color development compared to the case of non-mordanting, regardless of the aluminum potassium sulfate addition. In the case of silk, the application of pH10 ash solution increased a* value and decreased b* value compared to the case of non-mordanting.

Hydrogen ion-selective membrane electrodes based on tetrabenzylalkylenediamine (Tetrabenzylalkylenediamine을 이용한 수소이온 선택성 막전극)

  • Kim, Jae-Woo;Cho, Dong-Hoe;Jeong, Seong-Suk;Chung, Koo-Chun;Park, Myon-Yong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-167
    • /
    • 1997
  • This is on hydrogen ion-selective memebrane electrodes which were made of tetrabenzylmethylenediamine (TBMDA), tetrabenzylethylenediamine (TBEDA), tetrabenzylpropylenediamine(TBPDA) and tetrabenzylhexylenediamine(TBHDA) as neutral carriers. Their response potentials to carbon number between amino groups showed linear selectivities to hydrogen ion in the range of pH 1~pH 9, pH 2~pH 9, pH 3~pH 9 and pH 4~pH 9 and slopes were 48mV/pH, 52mV/pH, 64mV/pH, 59mV/pH respectively. The interferences effect on the cations were measured to alkali metal ions($Li^+$, $Na^+$, $K^+$), alkaline earth metal ions ($Mg^{2+}$, $Ca^{2+}$, $Sr^{2+}$, $Ba^{2+}$), transition metals ions($Cu^{2+}$, $Ni^{2+}$, $Co^{2+}$) and anions($I^-$, $Br^-$, ${NO_3}^-$, $SCN^-$), and selectivity coefficients were measured by separate-solution method. The membrane electrode made of TBMDA among the electrodes showed the best selectivity in acidic solution.

  • PDF

Hydrogen ion-selective membrane electrodes based on arylamines as neutral carriers (아릴아민계의 중성운반체를 이용한 수소이온선택성 막전극)

  • Jeong, Seong-Suk;Cho, Dong-Hoe;Kim, Jae-Woo;Chung, Koo-Chun;Park, Myon-Yong
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 1996
  • Hydrogen ion-selective membrane electrodes based on tribenzylamine(TBA), tetrabenzylethylenediamine(TBEDA), pentabenzyldiethylenetriamine(PBDETA) as neutral carriers were shown good selectivity and linearity in the range of pH 1~pH 9, pH 2~pH 12, pH 4~pH 12. The pH selectivity of this membrane electrodes have nothing relation with the numbers of unshared electron pair in TBA, TBEDA, PBDETA and were shown a slope of 43.8mV/pH, 46.9mV/pH, 43.6mV/pH respectively. The selectivity coefficients were determined by the separate solution method for alkali($Li^+$, $Na^+$, $K^+$), alkaline earth metal($Ba^{2+}$, $Ca^{2+}$, $Mg^{2+}$) and transition metal ions($Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$). The membrane electrode based on TBEDA appeared the best results as hydrogen ion electrode.

  • PDF

A polymer pH-Selectrode Based on Tribenzylamine as Neutral Carrier (Tribenzylamine 중성운반체를 이용한 pH-선택성 고분자 막전극)

  • Park, Myon-Young;Chung, Koo-Chun;Cho, Dong-Hoe;Lee, Kyeong-Jae;Jeong, Seong-Suk;Park, Sun-Young;Kim, Tae-Hun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.63-68
    • /
    • 1995
  • For the preparation of pH-selectrode, tribenzylamine, polyvinylchloride, dioctylphthalate, sodium tetraphenylborate and tetrahydrofuran were mixed with 0.02, 0.62, 1.34, 0.02g and 10ml respectively, and added 1g of acetylene black, graphite, silicon carbide or tungsten carbide respectively to improve electric conductivity. The selectrodes of seven kinds were shown linear to hydrogen ion in the range of pH 2 and 9. The best electric conductor for preparation of pH-selectrode based on tribenzylamine as neutral carrier was acetylene black and responded potential of the selectrode to hydrogen ion was shown the values near to theoretical Nernstian slope at $20^{\circ}C$. The interfering effects of the selectrode on hydrogen ion in the presence of alkali and alkaline earth metal ions were shown the better results with less error than glass electrode. The reproducibility and stability were good for use as a selectrode, especially in the presence of fluoride ion.

  • PDF

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

Adsorptive Removal of TBM and THT Using Ion-exchanged NaY Zeolites (이온교환된 NaY 제올라이트를 이용한 TBM와 THT의 흡착제거)

  • Jung, Gap-Soon;Lee, Seok-Hee;Cheon, Jae-Kee;Choe, Jae-Wook;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) that were widely used sulfur odorants in pipeline natural gas was studied using various ion-exchanged NaY zeolites at ambient temperature and atmospheric pressure. In order to improve the adsorption ability, ion exchange was performed on NaY zeolites with alkali metal cations of $Li^+,\;Na^+,\;K^+$ and transition metal cations of $Cu^{2+},\;Ni^{2+},\;Co^{2+},\;Ag^+$. Among the adsorbents tested, Cu-NaY and Ag-NaY showed good adsorption capacities for THT and TBM. These good behaviors of removal of sulfur compound for Cu-NaY and Ag-NaY zeolites probably was influenced by their acidity. The adsorption capacity for THT and TBM on the best adsorbent Cu-NaY-0.5, which was ion exchanged with 0.5 M copper nitrate solution, was 1.85 and 0.78 mmol-S/g at breakthrough, respectively. It was the best sulfur capacity so far in removing organic sulfur compounds from fuel gas by adsorption on zeolites. While the desorption activation energy of TBM on the Cu-NaY-0.5 was higher than NaY zeolite, the difference of THT desorption activation energy between two zeolites was comparatively small.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF