• Title/Summary/Keyword: alkali ion

Search Result 279, Processing Time 0.032 seconds

Photocatalytic Decomposition of Methyl Orange over Alkali Metal Doped LaCoO3 Oxides (알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응)

  • Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.718-722
    • /
    • 2017
  • We have investigated the photocatalytic activity for the decomposition of methyl orange on the pure $LaCoO_3$ and metal ion doped $LaCoO_3$ perovskite-typeoxides prepared using microwave process. In the case of pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts, the formation of the perovskite crystalline phase was confirmed regardless of the preparation method. From the results of UV-Vis DRS, the pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts have the similar absorption spectrum up to visible region. The chemisorbed oxygen plays an important role on the photocatalytic decomposition of methyl orange and the higher the contents of chemisorbed oxygen, the better performance of photocatalyst.

Development of a New Copper(II) Ion-selective Poly(vinyl chloride) Membrane Electrode Based on 2-Mercaptobenzoxazole

  • Akhond, Morteza;Ghaedi, Mehrorang;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.882-886
    • /
    • 2005
  • Copper(II) ion-selective PVC membrane electrode based on 2-mercaptobenzoxazole as a new ionophore and o-nitrophenyl octyl ether (o-NPOE) as plasticizer is proposed. This electrode revealed good selectivity for $Cu^{2+}$ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, and concentration of internal solution on the potential response of $Cu^{2+}$ sensor were investigated. The electrode exhibits good response for $Cu^{2+}$ in a wide linear range of 5.0 ${\times}$ 10−.6-1.6 ${\times}$ $10^{-2}$ mol/L with a slope of 29.2 ${\pm}$ 2.0 mV/decade. The response time of the sensor is less than 10 s, and the detection limit is 2.0 ${\times}$ $10^{-6}$ mol/L. The electrode response was stable in pH range of 4-6. The lifetime of the electrode was about 2 months. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, and transition metal ions.

Voltammetric Studies of Diazocalix[4]crown-6 for Metal Ion Sensing

  • Dong, Yun-Yan;Kim, Tae-Hyun;Lee, Chang-Seuk;Kim, Hyun-Jung;Lee, Jae-Hong;Lee, Joung-Hae;Kim, Ha-Suck;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3549-3552
    • /
    • 2010
  • The complex formation between diazocalix[4]dipropyl (1) and diazocalix[4]crown-6 ether (2) with alkali, alkaline earth and transition metal ions was investigated by voltammetry. Electrochemical properties of compounds 1 and 2 and their selectivity toward metal ions were evaluated in $CH_3CN$ solution by comparison of voltammetric behaviors of two phenols in each compound. Compounds 1 and 2 showed almost same voltammetric behavior which is two irreversible oxidation peaks caused by intramolecular hydrogen bonding between two phenols in 1 and 2. While, however, upon interacting with various metal ions, 1 with two propyl ether groups showed no significant changes in voltammetry, 2 with crown ether group caused significant voltammetric changes upon the addition of $Ba^{2+}$ to 2. Their behavior is closely related to the complex formation by entrapment of metal ion into crown ether cavity, and ion-dipole interaction between metal ion and two phenolic groups in calix[4]crown-6.

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.

Mechanism on Suppression of Alkali Silica Reaction by Ground Granulated Blast-Furnace Slag in NaCl Solution (NaCl 수용액 중에서 고로슬래그미분말의 알칼리실리카반응에 대한 팽창억제 메카니즘)

  • 김창길;삼포상;강원호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 1997
  • This study deals with the suppressing characteristics of alkali-silica reaction by ground granulated blast-furnace slag(GGBS) in NaCl solution. NaCl contents used in the experiment ranges over 0%, 2.8% and 20%. Reactive aggregate used is Japanese andesite. Also, three GGBSs of about 4.000. 6, 000 and $8, 000cm^2/g$ were used in the experiment. The replacement proportions of portland cement by GGBSs were 40%. 60%, 70% and 80%. respectively. The specimens with GGBS were severely contracted according to the increasing replacement ratio in NaCl solution. The contraction rate increases according to the increasing in NaCl content. Also. it does with increasing the blaine fineness of GGRS. It is concluded that the suppression of alkali-silica reaction by GGBS in NaCl solution is complished by contraction of GGBS due to chloride ion induced chemical shrinkage.

Characterization and the Catalytic Properties of Alkali- Exchanged Y-Zeolites on NOx Conversion (알칼리 이온 교환 Y-제올라이트의 NOx 전환에 대한 촉매 특성 및 반응성)

  • Lee Chang-Seop;Lee Kyung Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.50-55
    • /
    • 2005
  • The compositional and structural properties of alkali metal ion exchanged Y-zeolites have been investigated by la number of analytical techniques and their catalytic activities were tested for NOx reduction in combination with a non-thermal plasma. The NOx conversion data for LiY, NaY, KY and CsY were measured by chemiluminiscent NOx meter in the temperature range of 100 to $350^{\circ}C$. The initial activities of the catalyst at $150^{\circ}C$ increased in the order LiY < KY < NaY < CsY in alkali series. The activity of CsY and NaY were increased and showed maximum at $200^{\circ}C$ and then decreased in the plasma reactor, as the temperature increased. The activity of KY maintained same by $200^{\circ}C$ and then decreased, whereas the activity of LiY decreased with the increasing temperature. The CsY catalyst, which showed the highest activity in alkali metal series, exhibits a NOx conversion efficiency of $80\%$ between $170{\~}220^{\circ}C$.

  • PDF

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

AN EXPERIMENTAL STUDY OF THE EFFECT OF ION EXCHANGE ON STRENGTHENING OF DENTAL PORCELAIN (이온교환법에 의한 치과용도재의 강도증진 효과에 관한 실험적 연구)

  • Lee Young-Kook;Lee Sun-Hyung;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.75-86
    • /
    • 1991
  • Ion exchange strengthening is a chemical process whereby large alkali ions(such as potassium) are substituted for smaller ions(sodium) within the surfaces of glasses and ceramics, thereby reducing the thermal expansion coefficient of this surface region, and creating beneficial state of compressive stress within the near surface region. The purpose of this study was to determine the effects of ion exchange and etching treatments on the strength of some dental porcelains. Two feldspathic dental porcelains(Vitadur-N, G-Cera) were used in this study. A commercial ion exchange paste and etching gel containing 8% hydrofluoric acid were used for surface conditioning. Transverse strength was measured using a universal testing machine and the technique of EPMA(electron probe micro analysis) was used to access the potassium contents. The results were as follows: 1. Improvement in strength was only obtained by treating the surface placed in tension. 2. No changes in the dimensions of the treated specimens were detected when samples were measured with a micrometer. 3. There was significant increase in transverse strength of G-Cera IV group treated with etching and ion exchange, compared with G-Cera II group only treated with ion exchange. 4. From the results of EPMA test, increase in potassium contents was observed on the surface treated with ion exchange paste.

  • PDF

The PWM Control Which used Microprocessor for Intensity Control of Acid Ion Water (산성이온수 농도제어를 위한 Microprocessor를 이용한 PWM 제어)

  • Kwon, Yunjung;Nam, Sangyep
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.269-274
    • /
    • 2013
  • We are used with the alkaline ion water which an application field does to object for drinking water compare with the alkaline ion water which asked ion acid electrolysis so as to be very different. This is used with sterilization disinfection use by residual chlorine in case of strong acidity according to ph intensity, and in case of middle acidity use by washing and face washing, and mix with meal materials in case of weak acidity widely usable in cooking. Acid ion water generates as we electrolyze water. Chlorine gas and sodium hydroxide etc. was generated at electrolysis process, and we have toward sterilizing power. Derelicts such as chlorine, phosphorus, sulfur etc. are gathered from a negative ion, and we make acid ion water to + electrode direction in electrolysis. We used a diaphragm in order to disconnect too acid water and alkaline water. We implemented so that the acid water which it came down to three kinds of PWM voltage to PWM (pulse width modulation) control, and implementation method of ph intensity change authorized ph intensity between weak acidity to electrode in strong acidity as we used Microprocessor, and intensity was adjusted successively by PWM control was generated.

Synthesis of Low Concentration of NaOH Solution using $Na^+$ ion in the Concentrated Water from Membrane Separation Process (분리막 농축수에 포함된 Na를 이용한 저농도 NaOH 용액의 합성)

  • Lee, Yoon-Ji;Park, Youn-Jin;Choi, Jeong-Hak;Shin, Won-Sik;Choi, Sang-June;Chon, Uong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.810-815
    • /
    • 2011
  • Concentrated water discharged from seawater desalination process contains a high concentration of $Na^+$ ion. Electrolysis was applied to synthesize NaOH solution from the highly concentrated NaCl solution. The effect of various operating parameters of composited laboratory-scale chlor-alkali (CA) membrane cell was investigated. The operating parameters such as membrane types (CIMS and Nafion membranes), pretreatment of the membrane, flow rate (73 mL/min~200 mL/min), initial $Na^+$ ion concentration (1.5 M, 3M and 5 M) and current (1.5A and 2A) were evaluated. It was observed that synthesis efficiency of NaOH solution with CIMS membrane was higher than that with Nafion membrane, but the durability of CIMS membrane on $Cl_2$ gas was poor. The synthesis efficiency of NaOH solution increased with increasing initial $Na^+$ ion concentration and current, while the efficiency decreased with increasing flow rate using Nafion membrane.