• Title/Summary/Keyword: alkali feldspar

Search Result 100, Processing Time 0.023 seconds

A Study on Mineralization of Anyang Feldspar Ore Deposit (안양장석광상의 광화작용에 관한 연구)

  • Park, Boo Seong;Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.11-28
    • /
    • 1994
  • The Anyang Feldspar Mine is located in Seoksu Dong, Anyang City, Kyeonggi Do, Korea and has a long exploitation record that is once produced high grade sodium feldspars, for glaze. Geologically, This area is mainly composed of Mesozoic Jurassic biotite granite (Anyang granite) which intruded Precambrian Kyeonggi Gneiss Complex outcroped near the mining area. The deposit is localized on the southwest hill side of Anyang granite batholith and is confined in hydrothemal alteration zone formed by sodium-rich alkali hydrothermal fluids along the fractures of leucocratic granite showing later differentiation facies in the biotite granite. The hydrothermal alteration is characterized by albitization, sericitization, and desilication. The microscopic observation and EPMA, XRD analysis of the feldspar ores show that major minerals are albite and quartz and accessory minerals are orthoclase and sericite, and they are rarely associated with perthite, fluorite, zircon, kaolinite, molybdenite, microcline and iron-oxide. In the REE pattern, the strong negative Eu anomalies of the feldspar ores indicate the influence of feldspar fractionation and show similiar pattern of the host leucocratic granite. The filling temperature of quartz crystals in ore zone ranges from $276^{\circ}C$ to $342^{\circ}C$, and it is inferred that the alteration occurred by the hypothermal solution.

  • PDF

Characteristics of the rocks and its weathering phenomena of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, Korea (감은사지 3층 석탑(동탑)과 나원리 5층 석탑의 암석과 풍화현상의 특징에 대한 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.20-40
    • /
    • 1996
  • For obtaining the basic data for establishing plan on the conservation of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, the characteristics of the rock and weathering phenomena have been investigated. The former consists of quartz-rlch granite containing small amount of biotite, and the latter of alkali granite with abundant perthite, These rock phases are nearly identical to the marginal phase of medium-grained hornblende-biotite granodiorite and alkali granite respectively, which are distributed around the Kyeongju city. The rock weathering may be governed mainly by chemical weathering of feldspar following physical segregation of quartz grains and pervasive moss. The feldspar easily dissolve In the solution with pH<7 to precipitate clay mineral such as a kaolinite as a secondary phase on the feldspar surface. However, the chemical weathering of feldspar may continue when the surface is washed by the rain according to removal of the reprecipitated phase. On forwarding, the weathering may be greatly Influenced by the acid rain. Exfoliation and weathering along igneous lineation resulting in exfoliating along the structural line are the characteristic weathering phenomena. Also the secondary small cracks are irregularly developed on the rocks due to different strain on places by the overall structural unbalance of the pagodas. Along these cracks, the rain water intrudes deeply into the rocks and weathering occurs intensively compared to other parts. Weathering may be artificially promoted by the grinding or sculpturing when the pagodas were made. Because it may influence on the physical properties of the rocks as well as destruct the surface of the feldspar crystals, the major constituents of the rocks, it results in providing the environment of easy chemical weathering along time. For conservation, the pagodas must be structurally balanced by compacting the soil basement and supplementing rocks on the destroyed part. On the exfoliated part it is better not to be artifically treated as using cementing material. But the cracks may be filled up by cementing material to avoid the intrusion of acidic water. To supplement the rocks on the destroyed part, it may be better to use similar rock phases from identical biotite granite and alkali granite masses around the Kyeongju city.

  • PDF

Antirapakivi Mantled Feldspars from Sanbangsan Trachyte Lava Dome, Jeju Volcanic Field, Korea (산방산용암돔 조면암에서 산출되는 장석의 안티라파키비 조직)

  • Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • The compositions of the phenocrystic feldspars of the Sanbangsan trachyte range from labradorite(An53.6) to andesine(An35.4), and of the microphenocrysts and laths range from andesine(An31.2) to oligoclase(An18.7). Mantled feldspar which forms a thin rim around the phenocrysts and microphenocrysts, is anorthoclase(Or20.5An9.4) to sanidine(Or49.2An1.4). Phenocrystic plagioclase, which shows a distinct zonal structure, represents an oscillatory zoning in which the An content of the zone repeatedly increases or decreases between andesine (An39.3) and labradorite (An51.3) from the core toward the rim, and the rim of the phenocrysts is surrounded by alkali feldspar(Or31.9-39.4Ab63.2-57.0An4.9-3.7), showing the antirapakivi texture. Microphenocryst which does not represent the antirapakivi texture, shows the normal zoning with a decreasing An content (An36.4→An25.6) as it moves outward from the center of a crystal. As a result of X-ray mapping of K, Ca, and Na elements for the feldspar phenocrysts representing the typical zonal structure, shows the oscillatory zoning that six zones show the distinctive compositional differences, and the rims are mantled by alkali feldspar to indicate the antirapakivi texture. The groundmass is composed of K-enriched, Ca-poor alkali feldspar. The antirapakivi texture of feldspar which appears in Sanbangsan trachyte, may have been formed in mixing systems as a result of the juxtaposition of near liquidus melt, rich in alkali feldspar components(trachytic magma), with plagioclase phenocrysts and microphenocrysts already crystallized in a more mafic system.

Source rock investigation for the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House using nondestructive petrological analysis (청와대 소재 경주 방형대좌 석조여래좌상의 암석학적 비파괴분석을 통한 산지해석)

  • Lee, Myeong Seong;Yoo, Ji Hyun;Kim, Jiyoung
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.567-578
    • /
    • 2018
  • A nondestructive petrological investigation was carried out to identify the original location and form of the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House (so-called Stone Buddha in the Blue House). The Statue is a representative stone Buddha statue of Silla (9th century) but its original location is controversial and some parts were missing. Based on the petrological observation, magnetic susceptibility and gamma spectrometry, its stone material was identified as medium-grained alkali feldspar granite. This kind of granites are widely found in the Namsan, Gyeongju. It is very likely that the Namsan granites are the source of rock of the Stone Buddha. The Yudeoksa (Igeosaji temple site) and Namsan are possible to be the original home of the Buddha Statue since there are petrologically identical alkali feldspar granite outcrop distributed in Namsan and stone heritage made of the same stone type in both places. An investigation on the square middle stone base in the Chuncheon National Museum reveals that it is less likely to be the missing part of the Buddha statue as the stone base is fine- to medium-grained pink feldspar granite and has different magnetic susceptibility from the Buddha statue. This study confirmed the contribution and significance of petrological investigation to identification of stone heritage in Korea.

Effects of Alkali Oxides on the Cristobalitization of Quartz in Whiteware Body (자기소지에서 Quartz의 Cristobalite화에 미치는 알칼리 금속산화물의 영향)

  • 정창주;김남일;오경영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.981-989
    • /
    • 1992
  • This is a study on the effects of cristobalite transition of quartz in semi-vitrious whiteware body, as addition of alkali and alkali earth oxides, prepared by pottery stone, feldspar, kaolin and clay minerals. The amounts of ${\alpha}$-quartz to ${\alpha}$-cristobalite transition, F.O.C. (fraction of cristobalite), were increased with firing temperature. In MgO added body, ${\alpha}$-quartz was decreased and the formation of cristobalite was increased. Effects of K2O addition was remarkably decreased the formation of cristobalite. Additive effects of MgO and K2O were confirmed that it was very different to variation of transition temperature of metakaolinite to Si-Al spinel structure in thermal reaction of kaolinite minerals. Result CaO addition was ineffective to transition temperature, and the transition temperature in Na2O added body was decreased, but relative intensity of quartz and cristobalite crystal in XRD results was decreased. This was characterized by the effects on the formation of liquid phase much more.

  • PDF

Petrochemistry of Mesozoic Granites in Wolchulsan Area (월출산지역에 분포하는 중생대 화강암류에 대한 암석화학적 연구)

  • Kim, Cheong-Bin;Yoon, Chung-Han;Kim, Jeong-Taek;Park, Jay-Bong;Kang, Sang-Won;Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.375-385
    • /
    • 1994
  • The studied area is composed of Precambrian gneiss complex, middle Jurassic biotite granite, late Cretaceour sediments, volcanics and pink feldspar granite. Characteristic minerals of the biotite granite is plagioclase and hornblende whereas the pink feldspar granite is pink feldspar (perthite) and quartz. Plagioclase compositions of the biotite granite and the pink feldspar granite are oligoclase to calcic andesine ($An_{18-44}$) and sodic albite ($An_{0.5-5.0}$), respectively. In the variation diagrams of the Harker and normative Q-Or-Pl diagram, the biotite granite belongs to the category from granodiorite to granite, the pink feldspar granite from nomal to late granite. The values of D.I. L.I. and alkalinity of the pink feldspar granite are higher than those of the biotite granite. While CaO is enriched in the biotite granite, $K_2O$ is enriched in the pink feldspar granite. The ratio of $K_2O/Na_2O$ which indicates the relative ratio of alkali is 1.06 in the pink feldspar granite, and 0.86 in the biotite granite. In A-M-F and N-C-K diagrams both these granites are plotted in peraluminus granite ($Al_2O_3$>$Na_2O+K_2O+CaO$) region, assigned to calc alkaline series and alkaline series respectively. Put into the form of A-C-F diagram, the biotite granite falls under I-type, and the pink feldspar granite S-type. On the base of whole rock ratios of $Fe^{+3}/Fe^{+2}+Fe^{+3}$ and $^{87}Sr/^{86}Sr$ for the granites in studied area, the biotite granite indicates ilmenite series (0.26) and S-type and/or contaminated I-type ($0.72020{\pm}0.00050$), the pink feldspar granite magnetite series (0.44) and I-type ($0.70826{\pm}0.00020$).

  • PDF

Mineral Distribution in the Southeastern Yellow Sea Surface Sediments; KORDI Cruise Samples in 2010 (황해 남동부 표층 해양 퇴적물의 광물 분포; 2010년 한국해양연구원 탐사 시료)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il;Shin, Kyung-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.205-216
    • /
    • 2011
  • Mineral compositions of 69 southeastern Yellow Sea surface sediments collected at the Korea Ocean Research and Development Institute (KORDI) cruise in 2010, were determined using the quantitative X-ray diffraction analysis. Southeastern Yellow Sea surface sediments are composed of major minerals (quartz 49.1%, plagioclase 13.0% and alkali feldspar 9.3%), clay minerals, calcite, and aragonite. Illite (9.4%) is the most abundant clay mineral, chlorite (4.6%) is the second, and kaolinite (0.8%) is few. Quartz and alkali feldspar contents are high in coarse-grained sediments, whereas amphibole and clay mineral contents are high in fine-grained sediments. Quartz, plagioclase, alkali feldspar, chlorite, and kaolinite contents are higher, and illite content is lower in mud zone 1 corresponding to south margin of Central Yellow Sea Mud than in mud zone 2, a part of Southeastern Yellow Sea Mud. Difference of mineral composition between two mud zone suggests that source of fine sediment may be different in two mud zone and Southeastern Yellow Sea Mud might be largely supplied from the Keum and Youngsan rivers in southern part of the west coast in the Korean Peninsula.

Petrogeochemistry of Granitic Rocks Distributed in the Geumsan District, Korea (금산지역에 분포하는 화강암류의 암석지구화학)

  • Chin, Ho-Ill;Min, Kyoung-Won;Chon, Hyo-Taek;Park, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.123-137
    • /
    • 1995
  • The Mesozoic Geumsan granitic rocks of various composition are distributed in the Geumsan district, the central part of the Ogcheon Fold Belt. About 40 ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in this district and are believed to be genetically related to the granitic rocks. Based on their petrography and geochemistry, the granitic rocks in this district can be classified into two groups ; the Group I( equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Group II(seriate pinkfeldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Interpreted from their isotopic dating data and geochemical characteristics, the Group I and the Group II are inferred to be emplaced during the Jurassic(~184Ma), and the Cretaceous to the early Tertiary period(~59Ma), respectively. Both Group I and Group II generally belong to magnetite-series granitoids. The Cretaceous granitic rocks of Group II are more highly evolved than those of the Jurassic Group I. The Rb-Sr variation diagram suggests that the granitic rocks of the Jurassic Group I and of the Cretaceous Group II be evolved mainly during the processes of fractional crystallization and partial melting, respectively.

  • PDF

Geological Characteristics of Kyongju-Ulsan Area : Palaeomagnetism and Magnetic Susceptibility of the Granitic Rocks in the Ulsan Fault Area (경주-울산일원에 대한 지역지질 특성연구 : 울산단층주변 화강암류의 잔류자기와 대자율)

  • Kim, In-Soo;Son, Moon;Jung, Hyun-Jung;Lee, Joon-Dong;Kim, Jeong-Jin;Paik, In Sung
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.31-43
    • /
    • 1998
  • A total of 469 granitic samples were collected from 44 sites in the Ulsan fault area, southeast Korea. According to the previous petrographic studies, the granitic rocks have been divided into four groups (Hornblende biotite granodiorite, Hornblende granite, Biotite granite and Alkali-feldspar granite). NRM intensities, values of low field magnetic susceptibility, and magnetic behaviors during stepwise demagnetization experiments suggest rather a three-fold classification: In this scheme, Hornblende granite and Biotite granite are grouped together, as they did not show any significant differences in magnetic characteristics. Based on the Ishihara (1979)'s criterion, Alkali-feldspar granite is classified as ilmenite-series granite, whereas others are classified as magnetite-series granite. In the eastern part of the study area including the Tertiary basin area, declinations of site-mean characteristic remanent magnetizations (ChRMs) show clockwise deflection of more than 30 from the reference direction of east Asia. Both along and in the adjacent region of the Ulsan fault-line, however, no deflection of remanent direction was observed. A boundary line between the deflected and undeflected site-mean ChRMs is defined in this study, which runs roughly parallel to the Ulsan fault-line at the distance of about 6km eastward from the fault-line. We suggest that this newly found boundary line, which we call Yonil tectonic line, released dextral simple shear stress acted in the southeastern part of the Korean peninsula during the opening stage of the East Sea in the Early Cenozoic.

  • PDF

Petrology, Geochemistry and Tectonic Implication of the A-type Daegang granite in the Namwon area, Southwestern part of the Korean Peninsula (한반도 남서부 남원 일대에 분포하는 A형 대강 화강암의 암석학, 지화학 및 지구조적 의미)

  • Kim, Yong-Jun;Cho, Deung-Lyong;Lee, Chang-Shin
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.399-413
    • /
    • 1998
  • Daegang granite is located around the Namwon-gun, Cheolabuk-do, and is an elongate stock $(80 km^{2})$ in the NNE-SSW direction. Daegang granite has the very same mineralogical and geochemical characteristics as those of the typical A-type granites; (1) it is a one feldspar hypersolvus granite, and is classified as an alkali feldspar granite in the lUGS scheme, (2) has small amounts of Fe-rich biotite (annite) and alkali amphibole (ribeckite) that are late in the crystallization sequence of the granitic magma, (3) always contains opaque oxides, fluorite and zircon, (4) shows high and quite homogeneous $SiO_2$, content (mostly 72~77 wt.%) and $(Na_{2}O+K_{2}O)/Al_{2}O_{3}$ ratio (0.90~0.98), (5) contains high Ga, lOOOO*Ga/Ai, $K_{2}O+Na_{2}O$, $(K_{2}O+Na_{2}O)/CaO$, $K_{2}O/MgO$, FeO/MgO, agpaitic index, Zr, Nb, Ce, Y, Zn value or ratio that resemble to those of the Australian A-type granites (Whalen et al., 1987), and (6) has enriched LREE and HREE that show flat variation pattern with slightly depleted in HREE and profound Eu anomalies (Eu/Eu*=0.04~0.l4). In the tectonic discrimination diagrams of Pearce et al. (1984) and Eby (1992), Daegang granite is classified as a within plate granite and $A_{2}-type$.

  • PDF