• Title/Summary/Keyword: alkali basalt

Search Result 47, Processing Time 0.023 seconds

Magma Pathway of Alkali Volcanic Rocks in Goseong, Gangwon-do, Korea (강원도 고성지역에 분포하는 알칼리 현무암질 마그마의 상승경로)

  • Kil, Young-Woo;Shin, Hong-Ja;Ko, Bo-Kyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.196-207
    • /
    • 2007
  • Miocene basalt plugs in Goseong contain a large variety of crustal and mantle xenoliths and xenocrysts. One of basalt plugs, Unbongsan, are derived from 160 km depth. Whole-rock geochemistry and pressure and temperature conditions of mineral phases indicate that Unbongsan volcanic rocks are alkali basalts and the source magma of the alkali basalts was generated from about $0.2{\sim}2%$ partial melting of depleted garnet peridotite. Crystallization pressures and temperatures of mineral phases within ascending magma of Unbongsan alkali basalt indicate that olivines, clinopyroxenes, and plagioclases were crystallized at $75{\sim}110km,\;40{\sim}52km,\;37{\sim}54km$ depth, respectively. The ascending magma of Unbongsan alkali basalts enclosed mantle xenoliths at about $57{\sim}67km$ depth.

Petrology of Alkali Volcanic Rocks in Northern part of Ulrung Island (울릉도(鬱陵島) 북부(北部) 알칼리 화산암류(火山岩類)에 대(對)한 암석학적(岩石學的) 연구(硏究))

  • Kim, Yoon Kyu;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.19-36
    • /
    • 1983
  • The study revealed that the sequence of volcanism in Ulrung island can be classified into 5 stages, and the volcanic history is summerized as follow: 1st stage: Eruption of basaltic agglomerates, tuffs and lavas, 2nd stage: Eruption of trachytic and trachyandesitic agglomerates and tuffs, 3rd stage: Eruption of trachyte lavas and their lapilli tuffs, 4th stage: Eruption of trachyte lavas and nepheline phonolites, 5th stage: Eruption of pumice, trachytic ash and lapilli, and plutonic ejecta (fragments of alkali gabbro, monzonite and alkali feldspar syenite) and a subsequent caldera formation. Finally, a small scale eruption of leucite bearing trachyandesite lava in the caldera. Several evidences show that there have been long erosional intervals between the 1st and 2nd stages and between the 4th and 5th stages. A K-Ar age for trachybasalt lava of the 1st stage was determined to be 1.8 Ma, and a $C^{14}$ age, 9300Y. (Machida, 1981) is available for these volcanic events. Therefore, it is considered that volcanic activity of the island above sea level began at least in early Pleistocene, and continued to until 9300 years ago exploding large amount of pumice, prior to pouring out of leucite bearing trachyandesite from the inner caldera. Using solidification index (SI) of Kuno, microscopic texture and mineral composition as criteria of the classification, the volcanic rocks are classified into alkali basalt, trachybasalt, trachyandesite, trachyte and phonolite. These are mostly prophyritic in texture. Main constituent minerals of alkali basalt and trachybasalt are plagioclase, olivine, Ti-augite and magnetite. Principal minerals of trachyandesite are plagioclase, anorthoclase, clinopyroxenes, kaersutite, biotite and magnetite. Trachyte and phonolite consist mainly of anorthoclase, clinopyroxene and magnetite, showing typical trachytic texture in groundmass. In solidification index, alkali basalt ranges from 39 to 27, trachybasalt 17 to 14, trachyandesite 12 to 9 and trachyte 8.15 to 0.72. A trend of compositional variation showing a typical alkali volcanic rock series is revealed on $SiO_2$-oxides and SI-oxides diagrams. In $SiO_2$-total alkali diagram, alkali lime index and An-Ab'-Or diagram, the samples fall into the fields of potassic series of the alkali volcanic rock series, whereas in A-F-M diagram show a trend toward the alkali enrichment with a curve approaching toward the iron apex. In particular, trachybasalt lavas in this island have higher total iron contents which is comparable to alkali rocks in other areas, e. g. as Gough and Tristan volcanic islands located near the Mid-Oceanic ridge in South Atlantic Ocean.

  • PDF

INFLUENCE OF BASALT FIBRES ON THE PROPERTIES OF FLY ASH BASED GEOPOLYMER BINDER

  • Temuujin, J.;Minjigmaa, A.;Davaabal, B.;Darkhijav, B.;Ruescher, C.H.
    • Particle and aerosol research
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 2016
  • The influence of basalt fibres on the compressive strength of the geopolymer type binders has been studied. For the experiments 2 types of the basalt fibres were used, namely chopped and spooled fibres. Both types of basalt fibres were 7-10 micron thick in diameter and cut into pieces of 6 mm length. The fibres were mixed with 1% weight to the fly ash powder, followed by the addition of the activator solution (8M NaOH). The pastes obtained were cured at $70^{\circ}C$ for 20 h revealing compact bodies. Compressive strength was measured after 7 days and microstructure observation performed with SEM. The cube bodies ($2{\times}2{\times}2cm$) reveal compressive strength of 47.25(4.03) MPa, while it decreased to 34.0(9.05) MPa in spooled basalt fibres and to 17.33(5.86) MPa in the chopped basalt fibres containing binder, i.e 76% and 36% of the strength without fibres, respectively. The much weaker compressive strength of the chopped fibres containing binder is related to the absence of significant adhesion between the geopolymer binder and the basalt fibres, forming voids instead. Alkali leaching effect of basalt fibres could probably explain the drop in the compressive strength with spooled and chopped fibres, respectively.

Physical Properties of Basalt Chopped Fiber Reinforced Cement Composite (현무암 단섬유로 강화시킨 시멘트 복합재료의 물성)

  • Chun, Sang-Hee;Kim, Ho-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1298-1303
    • /
    • 2009
  • The effect of blending weight and fiber length on the tensile and flexural strength for Basalt fiber reinforce cement composites is discussed. The increase of physical properties is mainly affected by blending quantity of fibers instead of the fiber length. Also it is believed that the interfacial adhesion between Basalt fiber and cement matrix gives positive influence to the physical strength. Basalt fiber in saturated $Ca(OH)_2$ solution, which is similar to the alkaline hydration environment of cement, shows very low weight loss even after 3 weeks of immersion.

Geochemical and Geochronological Studies on Metaigneous Rocks in the Gyemyeongsan Formation, Northwestern Okcheon Metamorphic Belt and their Tectonic Implication (옥천변성대 북서부 계명산층 내 변성화성암류의 지구화학 및 지구연대학적 연구와 그 지구조적 의의)

  • 박종길;김성원;오창환;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.155-169
    • /
    • 2003
  • In the northwest Okcheon metamorphic belt, the metaigneous rocks in the Gyemyeongsan Formation have wider chemical ranges for major, trace and REE elements compared with metaigneous rocks in the Munjuri Formation and do not represent bimodal igneous activity which is characteristic for a continental rifting. The metaigneous rocks in the Munjuri Formation are regarded as products of single magmatic evolution, whereas those in the Gyemyeongsan Formation may be formed through multiple magmatic episodes. The felsic metavolcanic rocks in the Gyemyeongsan Formation show weaker Eu negative anomalies compared with those in the Munjuri Formation but those in both formations show similar degrees of enrichment from LREE to HREE. The metabasites in the Munjuri Formation do not show Eu anomalies but those in the Gyemyeongsan Formation show both positive and negative Eu anomalies(0.59

An Analytical Study on the Expansion Rates of Mortar-bars (ASTM C 227-90) for Basalt and Various Aggregates (모르타르봉 시험(ASTM C 227-90)에 의한 현무암 골재 등의 팽창률 분석 연구)

  • 정지곤;김경수
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.309-320
    • /
    • 2003
  • Since the concrete covers most structures in modern architecture and it is composed of aggregates of about 75%, the appropriate selection of aggregates is valuable for the durability of concrete. A major cause of the expansion of mortar-bar measured by ASTM C 227-90 has been accounted by the alkali-aggregate reaction. This study carried out designed experiments on some aggregates including basalt and sandstone, to classify the expansion factors into the alkali-aggregate reaction, the increase of the gel pore volume, and the interstitial water that could expand physically the cracks or foliation developed in aggregates itself. The quantitative analyses of expansion by each factor indicated that the interstitial water and/or the alkali-aggregate reaction had major roles in the concrete expansion. Thus, if the supplied aggregates have deteriorated the structural framework, it is important to investigate the exact causes through this suggested method.

A Study on the Spinel-Lherzolite Xenolith in the Alkali Basalt from Eastern Cheju Island, Korea (제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구)

  • Yun, Sung Hyo;Koh, Jeong Seon;Anh, Ji Young
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.447-458
    • /
    • 1998
  • The spinel Ihelzolite of ultramafic xenoliths are found in the alkali basalt from eastern part of the Cheju island, Korea. The xenolith is are mainly composed of olivine, orthopyroxene, clinopyroxene and spinel. Based on the chemical compositions of the constituent minerals, the ultramafic xenolith belong to upper mantle peridotite. Each minerals have a protogranular texture. Olivine with kink band texture partly shows undulatory extinction. Some clinopyroxenes have spongy textured rims. Brown spinels occur in the interstices between olivine and pyroxene grains. Olivine is mostly forsterite $(Fo_{89-90})$. Orthopyroxene is enstatite $(Wo_{1.3}En_{88.4}Fs_{10.3})$ with 3.87~5.25 wt% $Al_{2}O_{3}$. Clinopyroxene is diopside $(Wo_{48.0}En_{46.2}Fs_{5.8})$ with 6.75~5.03 wt% $Al_{2}O_{3}$. Spinel has the Mg value of 75.9 and its Cr-number is 10.2. According to the PoT estimations for the mantle xenoliths, equilibrium temperatures of the xenoliths range from 1023 to $1038^{\circ}C$ and pressure is 18 kbar. Spinellhelzolite from this area, which is characterized by lower Cr-number (10.2) and homogeneous chemical compositions, supports that these ultramafic xenoliths are derived from the upper mantle.

  • PDF

Effect of rock mineralogy on mortar expansion

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.233-241
    • /
    • 2020
  • Alkali-silica reaction (ASR) is among one of the most important damaging mechanisms in concrete, depending primarily on aggregates which contain reactive minerals. However, expansion in concrete may not directly relate to the reactive minerals. This study aims to investigate the influence of ASR and the expansion of mortar bars depending on aggregate type containing various components such as quartz, clay minerals (montmorillonite and kaolinite) and micas (muscovite and biotite). In this study, the accelerated mortar bar tests (AMBT) were performed in two conditions (mortar bars in the same and sole NaOH solutions). Petrographic thin section studies, X-ray diffraction (XRD) analysis (Rietveld method), scanning electron microscopy (SEM) and chemical analyses were carried out. This study showed that quartzite bars led to increase in expansion values of mortar bars in diabase-1 and andesite when these were in the same NaOH solution. However, three samples (basalt, quartzite and claystone) were found having ASR expansion based on the AMBT when the special molds were used for each sample. SEM study revealed that samples which exhibit highest expansions according to AMBT had a generally rough surface and acicular microstructures in or around the micro-cracks. Basalt and quartzite showed more variable in major oxides than those of other samples based on the chemical analyses, SEM studies and AMBT. This study revealed that the highest expansions were observed to source not only from reactive aggregates but also from alteration products (silicification, chloritization, sericitization and argillisation), phyllosilicates (muscovite, biotite and vermiculite) and clays (montmorillonite and kaolinite).

Petrology of the Basalts in the Seongsan-Ilchulbong area, Jeju Island (제주도 성산일출봉 일대 현무암에 대한 암석학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Jeong, Eun-Ju
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.324-342
    • /
    • 2007
  • This study reports petrography and geochemical characteristics of the basalt lava flows in Seongsan-Ilchulbong area, the easternpart of Jeju island, Korea, to understand the evolutionary processes of magma. Basalt lavas are classified into the Pyoseon-ri basalt and the Seongsan-ri basalt. The Pyoseon-ri basalt is dark-gray colored with many vescicles, and mainly consists of olivine, feldspar and rarely of clinopyroxene as phenocrysts. The Seongsan-ri basalt is largely aphanitic basalt and bright-gray colored, divided into two lava-flow units: lower lava flow (B1) and upper lava flow (B2) by the intercalated yellowish lapillistone and paleosol. The lavas plotted into sub-alkaline tholeiitic basalt and alkaline basalt series. The tholeiitic basalts have characteristically higher $SiO_2,\;FeO^T$, and CaO contents, but lower $TiO_2,\;K_2O,\;P_2O_5$ and other incompatible elements compared to the alkali basalts. The tholeiitic basalts have higher $SiO_2$ to the same MgO contents than the alkalic basalts. The contents of Ni, Cr, and MgO show a strong positive correlation, which indicates that low-MgO phases like plagioclase and titanomagnetite were important during the differentiation of magma. The contents of incompatible elements against that of Th show a strong positive correlation. The chondrite-nomalized REE patterns of tholeiitic and alkalic basalts are subparallel each other. LREEs contents of the former are lower than, but HREEs contents are similar to the latter. They both are similar to their K/Ba ratios. The primitive-mantle normalized spider diagram demonstrates that the contents of Ba and Th of all basaltic magma are enriched, and yet Cr, Ni are depleted. The tholeiitic and alkalic basalts may be originated from a different degree of the partial melting of the same mantle material source, and one shows a higher degree of the partial melting than the other.

Geology and Ore Deposit of the Apdong Nb-Ta Mine, North Korea (북한 압동 니오븀-탄탈륨(Nb-Ta) 광산의 지질 및 광상)

  • 이재호;김유동
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.407-413
    • /
    • 2003
  • The geology of the Apdong Nb-Ta deposit, is hosted by alkali metasomatites, consist of Upper Proterozoic sedimentary rocks, alkali syenites(Hoamsan intrusive) of Phyonggang Complex(late Paleozoic to early Mesozoic), Jurassic granite and Quaternary basalt. Alkali syenites are distinguished as alkali amphibole-pyroxene syenite, alkali amphibole-biotite syenite, biotite-nepheline syenite, biotite syenite, and quartz-alkali amphibole-pyroxene syenite. Alkali metasomatites are the products of intense post-magnatic metasomatism, and form the Nb-Ta ore bodies as the belt, irregular vein and lenticular types in the southern part of Hoamsan intrusive. The ore mineralization is characterized by the occurrence of pyrochlore, zircon, and small amounts of columbite, fergusonite. magnetite, fluorite, molybdenite, ilmenite, titanite, apatite, and monazite. Pyrochlore is one of the niobium/tantalum oxides and contains substantial amounts of rare earths and radioactive elements. The compositional varieties of pyrochlore can be defined: (1) enriched in tantalum, uranium and cerium, (2) substantially tantalum- and fluorine-poor, and (3) enriched in thorium or barium. The geochemical characteristics, ore textures and mineral occurrences indicate that alkali metasomatism of the mineralizing fluid was the dominant ore-forming process.