• Title/Summary/Keyword: aliphatic isocyanate

Search Result 15, Processing Time 0.019 seconds

Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Lee;Hye Kyu Kim;Jahyo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-72
    • /
    • 1976
  • The addition of one mole of zinc chloride to 2.33 moles of sodium borohydride in tetrahydrofuran at room temperature gave a clear chloride-free supernatant solution of zinc borohydride after stirring three days and standing at room temperature.The approximate rates and stoichiometry of the reaction of zinc borohydride with 54 selected organic compounds were determined in order to test the utility of the reagent as a selective reducing agent. Aldehydes and ketones were reduced rapidly, aromatic ketones being somewhat slowly, and the double bond of cinnamaldehyde was not attacked. Acyl halides were reduced rapidly within one hour, but acid anhydrides were reduced at a moderate rate. Carboxylic acids, both aliphatic and aromatic, were slowly reduced to alcoholic stage. Esters were inert to this reagent but a cyclic ester, γ-butyrolactone, was slowly attacked. Primary amides were reduced slowly with partial evolution of hydrogen, whereas tertiary amides underwent neither reduction nor hydrogen evolution. Epoxides and nitriles were all inert, as well as nitro, azo, and azoxy compounds. Cyclohexanone oxime and phenyl isocyanate were reduced slowly but pyridine was inert. Disulfide, sulfoxide, sulfone and sulfonic acids were stable to this reagent.

  • PDF

Selective Reduction with Lithium Borohydride. Reaction of Lithium Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소리튬에 의한 선택환원. 수소화붕소리튬과 대표적 유기화합물과의 반응)

  • Nung Min Yoon;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.108-120
    • /
    • 1977
  • The approximate rates and stoichiometries of the reaction of lithium borohydride, with fifty two selected organic compounds containing representative functional groups under the standard condition (tetrahydrofuran, $0^{\circ}$), were studied.Among the active hydrogen compounds,primary alcohols and compounds containing an acidic proton liberated hydrogen relatively fast, but secondary and tertiary alcohols very sluggishly. All the carbonyl compounds examined were reduced rapidly within one hour. Especially, among the ${\alpha}{\beta}$-unsaturated carbonyl compounds tested, the aldehydes consumed one hydride cleanly, however the cyclic ketones consumed more than one hydride even at $-20^{\circ}$. Carboxylic acids were reduced very slowly, showing about 60% reduction in 6 days at $25^{\circ}$, however acyl chlorides reduced immediately within 30 minutes. On the other hand, the reductions of cyclic anhydrides proceeded moderately to the hydroxy acid stage, however the further reductions were very slow. Aromatic and aliphatic esters, with exception of the relatively moderate reduction of acetate, were reduced very slowly, however lactones were reduced at a moderate rate. Epoxides reacted slowly, but amides and nitriles as well as the nitro compounds were all inert to this reagent. And cyclohexanone oxime and phenyl isocyanate were reduced very sluggishly. Last of all, all sulfur compounds studied were inert to this hydride.

  • PDF

Reaction of Representative Organic Compounds with Sodium Borohydride in the Presence of Aluminum Chloride (염화알루미늄 존재하에서의 수소화붕소나트륨과 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Leeq;Jin Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 1973
  • The addition of one mole of aluminum chloride to three moles of sodium borohydride in tetrahydrofuran gives a turbid solution with enormously more powerful reducing properties than those of sodium borohydride itself. The reducing properties of this reagent were tested with 49 organic compounds which have representative functional groups. Alcohols liberated hydrogen immediately but showed no sign of hydrogenolysis of alkoxy group. Aldehydes and ketones were reduced rapidly within one hr. Acyl derivatives were reduced moderately, however, carboxylic acids were reduced much more slowly. Esters, lactones and epoxides were reduced readily than sodium borohydride or borane. Tertiary amide was reduced slowly, however, primary amide consumed one hydride for hydrogen evolution but reduction was sluggish. Aromatic nitrile was reduced much more readily than aliphatic nitrile. Nitro compounds were inert to this reagent but azo and azoxy groups were slowly attacked. Oxime was reduced slowly but isocyanate was only partially reduced. Disulfide and sulfoxide were attacked slowly but sulfide and sulfone were inert. Olefin was hydroborated rapidly.

  • PDF

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

Comparison of pigment in automotive solid color paints by FT-IR and XRF spectroscopy for forensic aspect (법과학적 관점에서 FT-IR과 XRF를 이용한 단색 페인트의 안료 비교)

  • Park, Ha-Sun;Kim, Ki-Wook;Heo, Sangcheol;Ryu, Seung-Jin;Lee, Hyunik;Min, Ji-Sook
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.245-255
    • /
    • 2013
  • Identification of paint on victim's clothing and a vehicle are valuable for forensic examination when investigating hit-and-run accidents. Automotive paints on clothes are used to prove a victim caused by traffic accident and to identify a suspected vehicle. The comparison of transferred paints between victim's vehicle and suspected vehicle can be an important evidence in reconstructing the accident situation and in discovering the truth. The paints such as white, yellow, red, blue, or black are hard to examine particle shape under a stereomicroscope because of it is not included aluminum, pearl, and mica flakes in the pigments. The aim of this study under forensic aspect is to compare pigment among basecoat layers of solid paints by identifying inorganic elemental compositions and binder resins of pigments using by micro-FT-IR and micro-XRF spectrometer. The pigment samples were analyzed by using two methods of FT-IR: Reflectance and ATR method. Two methods of FT-IR were useful in discriminating binder resins of pigments by comparing characteristic peaks and patterns of spectra. Also, XRF spectrometer could identify the elemental compositions in inorganic pigments of trace paints which are difficult to compare the identification by FT-IR.