• Title/Summary/Keyword: algorithms of estimate calculation

Search Result 29, Processing Time 0.023 seconds

A Channel Estimation Using the Sliding Window and an Adaptive Receiver in the Mobile Communication Channels (이동 통신 환경하에서 슬라이딩 윈도우 방법을 이용한 채널 추정 및 적응 수신기)

  • 송형규;조위덕
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.768-775
    • /
    • 1998
  • The equalizer is the central part of the receiver and its performance significantly affects the overall performance of the system in the mobile communication. A proposed equalizer is composed of the channel estimator, MLSE based on the Viterbi algorithm and GMSK decoder. The approximation of GMSK with QPSK has great impact on the equalizer design, because it allows us to use the existing simple and efficient algorithms for designing optimal QPSK equalizer. In order to estimate efficiently channel, we use a sliding window algorithm based on energy calculation and cross-correlator. And also a tuning scheme is presented in order to improve the equalizer performance. Simulation results indicate that a proposed equalizer meets the GSM standards easily in terms of performance.

  • PDF

Estimation Method for Ice load of Managed Ice in an Oblique Condition (깨어진 해빙의 사항조건에서 빙 하중 추정법 연구)

  • Kim, Hyunsoo;Lee, Jae-bin
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Recently, as sea ice in the Arctic has been decreasing due to global warming, it has become easier to develop oil and gas resources buried in the Arctic region. As a result, Russia, the United States, and other Arctic coastal states are increasingly interested in the development of oil and gas resources, and the demand for offshore structures to support Arctic sea resources development is expected to significantly increase. Since offshore structures operating in Arctic regions need to secure safety against various drifting ice conditions, the concept of an ice-strengthened design is introduced here, with a priority on calculation of ice load. Although research on the estimation of ice load has been carried out all over the world, most ice-load studies have been limited to estimating the ice load of the icebreaker in a non-oblique state. Meanwhile, in the case of Arctic offshore structures, although it is also necessary to estimate the ice load according to oblique angles, the overall research on this topic is insufficient. In this paper, we suggest algorithms for calculating the ice load of managed ice (pack ice, 100% concentration) in an oblique state, and discuss validity. The effect of oblique angle according to estimated ice load with various oblique angles was also analyzed, along with the impact of ship speed and ice thickness on ice load.

Performance Improvement in Speech Recognition by Weighting HMM Likelihood (은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상)

  • 권태희;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.

Camera Extrinsic Parameter Estimation using 2D Homography and Nonlinear Minimizing Method based on Geometric Invariance Vector (기하학적 불변벡터 기탄 2D 호모그래피와 비선형 최소화기법을 이용한 카메라 외부인수 측정)

  • Cha, Jeong-Hee
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.187-197
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features, Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time, The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum, In order to complement these shortfalls, we, first proposed constructing feature models using invariant vector of geometry, Secondly, we proposed a two-stage calculation method to improve accuracy and convergence by using 2D homography and LM method, In the experiment, we compared and analyzed the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

  • PDF

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.

A Proposed Algorithm and Sampling Conditions for Nonlinear Analysis of EEG (뇌파의 비선형 분석을 위한 신호추출조건 및 계산 알고리즘)

  • Shin, Chul-Jin;Lee, Kwang-Ho;Choi, Sung-Ku;Yoon, In-Young
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.52-60
    • /
    • 1999
  • Objectives: With the object of finding the appropriate conditions and algorithms for dimensional analysis of human EEG, we calculated correlation dimensions in the various condition of sampling rate and data aquisition time and improved the computation algorithm by taking advantage of bit operation instead of log operation. Methods: EEG signals from 13 scalp lead of a man were digitized with A-D converter under the condition of 12 bit resolution and 1000 Hertz of sampling rate during 32 seconds. From the original data, we made 15 time series data which have different sampling rate of 62.5, 125, 250, 500, 1000 hertz and data acqusition time of 10, 20, 30 second, respectively. New algorithm to shorten the calculation time using bit operation and the Least Trimmed Squares(LTS) estimator to get the optimal slope was applied to these data. Results: The values of the correlation dimension showed the increasing pattern as the data acquisition time becomes longer. The data with sampling rate of 62.5 Hz showed the highest value of correlation dimension regardless of sampling time but the correlation dimension at other sampling rates revealed similar values. The computation with bit operation instead of log operation had a statistically significant effect of shortening of calculation time and LTS method estimated more stably the slope of correlation dimension than the Least Squares estimator. Conclusion: The bit operation and LTS methods were successfully utilized to time-saving and efficient calculation of correlation dimension. In addition, time series of 20-sec length with sampling rate of 125 Hz was adequate to estimate the dimensional complexity of human EEG.

  • PDF

Estimation of Food Commodity Intakes from the Korea National Health and Nutrition Examination Survey Databases: With Priority Given to Intake of Perilla Leaf (국민건강영양조사 자료를 이용한 식품 섭취량 산출 방법 개발: 들깻잎 섭취량을 중심으로)

  • Kim, Seung Won;Jung, Junho;Lee, Joong-Keun;Woo, Hee Dong;Im, Moo-Hyeog;Park, Young Sig;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.307-315
    • /
    • 2010
  • The safety and security of food supply should be one of the primary responsibilities of any government. Estimation of nation's food commodity intakes is important to control the potential risks in food systems since food hazards are often associated with quality and safety of food commodities. The food intake databases provided by Korea National Health and Nutrition Examination Survey (KNHANES) are good resources to estimate the demographic data of intakes of various food commodities. A limitation of the KNHANES databases, however, is that the food intakes surveyed are not based on commodities but ingredients and their mixtures. In this study, reasonable calculation strategies were applied to convert the food intakes of the ingredients mixtures from the KNHANES into food commodity intakes. For example, Perilla leaf consumed with meat, raw fish, and etc. in Korean diets was used to estimate its Korean intakes and develop algorithms for demographic analysis. Koreans have consumed raw, blanched, steamed, and canned perilla leaf products. The average daily intakes of the perilla leaf were analyzed demographically, for examples, the intakes by gender, age, and etc. The average daily intakes of total perilla leaf were 2.03${\pm}$0.27 g in 1998, 2.11${\pm}$0.26 g in 2001, 2.29${\pm}$0.27 g in 2005, 2.75${\pm}$0.35 g in 2007, and 2.27${\pm}$0.20 g in 2008. Generally, people equal to or over 20 years of age have shown higher perilla leaf intakes than people below 20. This study would be contributed to the estimation of intakes of possible chemical contaminants such as residual pesticides and subsequent analysis for their potential risk.

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level (산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용)

  • Lee, Bora;Kim, Eunsook;Lim, Jong-Hwan;Kang, Minseok;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1117-1132
    • /
    • 2019
  • Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.

Tissue Inhomogeneity Correction in Clinical Application of Transmission Dosimetry to Head and Neck Cancer Radiation Treatment (두경부 방사선 치료 환자에서 투과선량 알고리즘의 임상 적용시 불균질 조직 보정에 관한 연구)

  • Kim Suzy;Ha Sung Whan;Wu Hong Gyun;Huh Soon Nyung
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.155-163
    • /
    • 2004
  • Purpose : To confirm the reproducibility of in vivo transmission dosimetry system and the accuracy of the a1gorithms for the estimation of transmission dose in head and neck radiation therapy patients. Materials and Methods : From September 5 to 18, 2001, transmission dose measurements were peformed when radiotherapy was given to brain or head and neck cancer patients. The data of 35 patients who were treated more than three times and whose central axis of the beam was not blocked were analyzed in this study. To confirm the reproducibility of this system, transmission dose was measured before dally treatment and then repetitively every hour during the treatment time, with a field size of 10$\times$10 cm$^{2}$ and a delivery of 100 MU. The accuracy of the transmission dose calculation algorithms was confirmed by comparing estimated dose with measured dose. To accurately estimate transmission dose, tissue inhomogeneity correction was done. Results : The measurement variations during a day were within $\pm$0.5$\%$ and the dally variations in the checked period were within $\pm$ 1.0$\%$, which were acceptable for system reproducibility. The mean errors between estimated and measured doses were within $\pm$5.0$\%$ in Patients treated to the brain, $\pm$2.5$\%$ in head, and $\pm$ 5.0%$\%$in neck. Conclusion : The results of this study confirmed the reproducibility of our system and its usefulness and accuracy for dally treatment. We also found that tissue inhomogeneity correction was necessary for the accurate estimation of transmission dose in patients treated to the head and neck.