• Title/Summary/Keyword: algal bloom remove efficiency

Search Result 3, Processing Time 0.023 seconds

A Study on the Impacts of Paste Type Torrefied Wood Flour Coagulants on Water Ecosystem (반탄화목분 Paste상 응집제의 수생태계 미치는 영향에 관한 연구)

  • YANG, Seung Min;LEE, Seok Eon;PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.709-720
    • /
    • 2019
  • Due to global warming and abnormal climate, the incidence and scale of green tracts in rivers and water intake dam are increasing every year. Therefore, in this study, developed eco friendly positively charged Torrefied Wood Flour(TWF) coagulant by reusing wood damaged by blight as a natural material. In order to evaluate the effect of coagulant on water ecosystem, green algae contaminated water was collected and TOC showed high removal rate of 86% ~ 92% under 1% and 5% TWF C-PAM treatment condition. The $NH_3-N$ showed 53% removal efficiency. The average pH of the polluted water was 7.9 in the case of hydrogen ion concentration, and the pH of the treated water was in the range of 6.5 ~ 7.7, It was found to be suitable for water quality standards. In ecotoxicity tests, all the results of the experiment showed that both the number of green algae and that of treated water were not affected by the survival of the daphnia. Therefore, as a result of the analyzing, developed paste type TWF coagulants is considered to be able to remove algae using natural resources.

Substitutability of coagulation process by pre-treatment of coagulation·flotation using natural algae coagulant (천연조류제거제를 활용한 응집·부상 전처리공정의 기존 응집공정 대체 가능성)

  • Jang, Yeo-Ju;Jung, Jin-Hong;Lim, Hyun-Man;Chang, Hyang-Youn;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • In the coagulation/sedimentation (C/S) process of the water treatment process, the inflow of massive algal bloom causes many problems including fouling of filter media. This study was conducted to find out the way to remove the algae's harmful effects by addition of pre-treatment prior to C/S process. Many Jar-tests were conducted such as (1) ACF (Algae Coagulation Flotation) process using natural algae coagulant (Water $Health^{(R)}$), (2) ACF + C/S process and (3) C/S process with a variety of conditions using cultured algae. The average values of turbidity were (1) 0.42 NTU for ACF process, (2) 0.13 NTU for ACF + C/S process and (3) 0.25 NTU for C/S process. It was shown that the treatment efficiency of ACF process could get low turbidity results, and ACF + C/S process could achieve more efficient results than those of C/S process. Any negative effects of ACF process to the efficiency of C/S process were not observed in ACF + C/S process. In order to reduce the unfavorable effects of algae, it was found out that the introduction of ACF process in the forms of (1) ACF or (2) ACF + C/S could be one of the effective and alternative solutions.

A Study of Removal Property of Harmful Algal Blooms by Hwangto and Oriental Mineral Medicines (황토와 광물성 한약재의 적조구제 특성에 관한 연구)

  • Kim, Pil-Geun;Sung, Kyu-Youl;Jang, Young-Nam;Park, Maeng-Eon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.277-289
    • /
    • 2006
  • This study was carried out to find a new material having high removal efficiency for the harmful red tide. C. polykrikoides grow very fast and accumulate into dense and visible patches near the surface of the seawater ('Water bloom'). Some mineral medicines and Hwangto (reddish soil consist of clay minerals and Fe-oxides) were used in this study to remove C. polykrikoides. The pre-determined sprinkling ratio of mineral vs. seawater which contains approximately 5,000 cells/mL of C. polykrikoides was 10 g/L. In order to quantify the removal efficiency, the density of living cells was measured by counting with the Intervals of 0, 10, 30, and 60 minutes after sprinkling. Five Hwangtos feom different localities were examined in this study. It is found that a material with a high concentration of Fe and Al was the most effective to remove C. polykrikoides. After the sprinkling of the Hwangto showing the best removal efficiency in the test, 99% of total algaes were found to be eliminated within 60 minutes. Jeokeokji showed the highest removal efficiency among clay mineral medicines(92% removal efficiency after 60 minutes), and the rests in decreasing order are as follows: Gamto (91%) > Baekseokji (89%) > Hydromica (81%). In addition, Fe-oxide mineral medicine similarly looking as fine-grained earthy Daejaseok showed 100% removal efficiencyafter 30 minutes, and Wooyoeryang, 95% after 60 minutes. It is noted that even little addition (1 g/L) of Daejaseok, 10% of Hwangto concentration into seawater showed the removal efficiency of 100% after 60 minutes. From the results, it could be concluded that the fine-grained earthy Daejaseok was the most effective natural mineral medicine to remove the C. polykrikoides from seawater. Under the microscope the removal mechanism was found to be activated in the following order: adsorption, swelling of chain colony, chain colony crisis and algaecide.