• Title/Summary/Keyword: algae succession

Search Result 33, Processing Time 0.027 seconds

Seasonal Dynamics of Aquatic Environment and Phytoplankton in Pyeongtaek Reservoir, Korea (평택호에서 수환경과 식물플랑크톤의 계절적 동태)

  • Sin,Jae-Gi
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Seasonal investigations were conducted to determine the major aquatic environmental factors and the variation of phytoplankton in Pyeongtaek Reservoir in March, June, September, and December 2000. Heavy rainfall mainly occurs from late June to mid-September, and water quality of reservoir was high in the influent zone of stream and riverine zone of reservoir. The biomass of phytoplankton was related to aquatic environmental factors. In particular, its value increased where nutrient concentration was high. Likewise, the increase of turbidity was found to have anthropogenic effects on the varying quantity of phytoplankton. The phytoplankton composition in quantitative survey identified into 43 genera and 71 species. Species numbers of Bacillariophyceae, Cyanophyceae, and Chlorophyceae accounted for 17%, 15%, and 49%, respectively, with the remainder constituting less than 3-7%. The distribution of such phyla also significantly varied according to seasons, accounting for 25%, 37%, 61%, and 14% in March, June, September, and December, respectively. Bacillariophyceae and Chlorophyceae were observed throughout the year, while Cyanophyceae proliferated in June and September. Euglenophyceae and Dinophyceae were prevalent in March and September, while Cryptophyceae occurred in March and December. The succession trend of phytoplankton showed the maximum cell density was followed by Bacillariophyceae (6.8$\times$$10^3$ cells ${\cdot}$ml)$\rightarrow$ Chlorophyceae (3.7$\times$$10^3$ cells ${\cdot}$ml)$\rightarrow$Cyanophyceae (1.3$\times$$10^4$ cells ${\cdot}$ml)$\rightarrow$Cryptophyceae (1.2$\times$$10^3$ cells ${\cdot}$ml). The cell density was the highest in the upstream. Dominant species were composed of Aulacoseira ambigua, Stephanodiscus hantzschii f. tenuis of Bacillariophyceae, Anabaena spiroides var. crassa, Microcystis aeruginosa, Oscillatoria amphibia of Cyanophyceae, Actinastrum hantzschii var. fluviatile, Pediastrum duplex var. reticulatum of Chlorophyceae, Euglena gracilis, Trachelomonas spp. of Euglenophyceae, and Chroomonas spp., Cryptomonas spp. of Cryptophyceae. As a results, seasonal variation of phytoplankton in Pyeongtaek Reservoir was evident in spite of inflow the high concentration of nutrients from watershed streams, because hydrological control and anthropogenic disturbance in reservoir were found to have major effects on the retention time of water.

Development of Benthic Community on an Artificial Reef Complex, Jeju Island, Korea

  • Yi, Soon-Kil;Huh, Hyung-Tack;Je, Jong-Geel;Kim, Dae-Gwen
    • Ocean and Polar Research
    • /
    • v.23 no.3
    • /
    • pp.255-264
    • /
    • 2001
  • Development process of benthic community on experimental substrata attached on a newly installed artificial reef complex in Jeju Island was observed for 27 months from 1992 to 1994. Among 34 species of algae and 64 species of zoobenthos obtained from the study, Ecklonia cava dominated with a maximum biomass of about $10kg/m^2$. It was able to smother the other animals, however it provided a new substrate for the new settlers. Opportunistic bryzoans such as Likenopora radiata and Dexiospira spirillum occurred during the early stage were substituted by poriferans, banacles and other bryzoans. Young barnacles were smothered by bryozoans, on the contrary, bryozoans were bulldozed by adult barnacles. No apparent differences have been observed between vertically and horizontally installed substrates in terms of species composition and biomass during the early stage of succession. Thereafter owing to the rapid growth of E. cava, the horizontal substrata carried on a higher biomass while the vertical showed a higher coverage. The benthic process on the experimental substrata can be classified into three stages: initial stage, build up stage and regulatory stage. Important mechanisms involved were canopying of E. cava, suffocation by bryozoans and poriferans, and bulldozing of adult barnacles.

  • PDF

The Structure of Phytoplankton Community in the Middle-Lower Part of the Naktong River (낙동강 중.하류의 식물플랑크톤 군집구조)

  • 문성기;정종문;최철만
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2001
  • This study was carried out to investigate phytoplankton community structure in the Naktong river from January to December in 1999. In water quality, average value of pH were 8.1, BOD 2.5mg/$\ell$, COD 5.0mg/$\ell$, Chl-a 41$\mu\textrm{g}$/$\ell$, and $NH_4^+-N$ 0.08mg/$\ell$, respectively. Phytoplankton were identified 42 genera 76 species. Among these, diatoms were 39 species(51.3%), green algae 25 species(32.9%), cyanobacteria 4 species(5.3%), dinoflagellates 4 repectively. The highest standing crops were 33,023 cells/$m\ell$ in February at the Mulgum and the lowest 79 cells/$m\ell$ in March at the Goryung. Also, Standing crops were increased with proceeding from middle part to lower part. Seasonal succession of phytoplankton represented that Stephanodiscus hantzschii was dominant species in winter, Cyclotella menaghiniana and Synedra acus in spring, C. meneghiniana, S. acus, Aulacoseira granulata var. angustissima in summer, and A. granulata var. angustissima and C. meneghiniana in autumn. Ecological important species were 4 species, that are Stephanodiscus hantzschii, Cyclotella meneghiniana, Synedra acus, and Aulacoseira granulata var. angustissima. In the community analysis, dominance indices ranged from 0.434(August, Namji) to 0.999(January, February, Mulgum) and diversity indices from 0.026(February, Mulgum) to 3.073(September, Namji). According to the similarity index among the stations, it was generally defind as two areas such as middle(Goryung, Namji and Samryangjin) and lower part(Mulgum).

  • PDF

Seasonal Characteristics of Phytoplankton Dynamics and Environmental Factors in the Coast of Mara-do and U-do, Jeju Island, Korea

  • Affan, Abu;Lee, Joon-Baek
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.235-245
    • /
    • 2004
  • A study on seasonal characteristics of phytoplankton dynamics and environmental factors was carried out at four stations including Mara-do and U-do located in the western and eastern coast of Jeju Island in southern Korea from April 2003 to March 2004. Out of 101 phytoplankton species identified, 84 belong to Bacillariophyceae, 9 Dinophyceae, 6 phytoflagellates and 2 coccolithophorids, and the highest value of species diversity was observed in April. Phytoplankton was more abundant at the western coast than at the eastern coast from March to September and its highest abundance was 49.24 ${\times}$ 10$^3$ cells L$^{-1}$ at Mara-do in July. The pennate diatoms were more abundant at the western coast than at the eastern coast with the highest abundance of 38.75 ${\times}$ 10$^3$ cells L$^{-1}$ at Mara-do in July, and during this period Nitzschia longissima contributed 68.5% of the total phytoplankton abundance. Naviculaceae was more abundant at Gosan (western coast) in November when Stauroneis membranacea represented 80.1% of the abundance. Leptocylindrus dances contributed 49.4% of the abundance at U-do in November. Dinophyceae was more abundant at U-do in August. Water temperature and pH fluctuated from 11.7${^{\circ}C}$ to 27.1${^{\circ}C}$ and from 7.31 to 8.70, respectively. Water temperature of Mara-do was about 1-2${^{\circ}C}$ higher than the other stations. Salinity varied from 30.4 to 35.0 psu with the minimum in rainy season and the maximum at the end of winter. The concentration of NH$_4$-N, NO$_3$-N, NO$_2$-N, PO$_4$-P and SiO$_2$-Si ranged 0.07-6.79, 1.0-62.0, 1.0-8.0, 1.0-7.0 and 7.0-191.0 $\mu$g-at L$^{-1}$, respectively. Chlorophyll a concentrations varied from 0.10 to 1.17 $\mu$g L$^{-1}$. NH$_4$-N concentrations were high at U-do from May to December, and at Mara-do from January to February. The high concentrations of NO$_3$-N were found at Mara-do from June to September and at U-do from January to May. The effects of various physicochemical parameters on the seasonal distribution and succession of phytoplankton population suggest that there is a classical pattern of phytoplankton dynamics in Jeju coastal waters.

The Analysis of Phytoplankton Community Structure in the Middle-Lower Part of the Nakdong River (낙동강 중·하류의 식물플랑크톤 군집구조 분석)

  • Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.430-435
    • /
    • 2013
  • A seasonal variation of phytoplankton community in the middle-lower part of the Nakdong River was studied in four sampling stations at monthly intervals from January to December 2012. We identified 40 genera 72 species of phytoplankton. Among these, diatoms were 36 species (50.0%), green algae 20 species (27.8%), blue-green algae 9 species (12.5%) and others 7 species (9.7%), respectively. The phytoplankton standing crops were recorded a maximum of 29,640 cells/mL at the Mulgeum (St. 4) in June and a minimum of 236 cells/mL at the Goryung (St. 1) in October. Also, Standing crops were increased with proceeding from middle part to lower part. Ecological important species were Stephanodiscus hantzschii, Cyclotella meneghiniana, Synedra acus, Aulacoseira granulata, Pediastrum sp. and Microcystis aeruginosa. Seasonal succession of phytoplankton represented that Stephanodiscus hantzschii was dominant species in winter, Cyclotella meneghiniana, Synedra acus was dominant species in spring, Microcystis aeruginosa, Cyclotella meneghiniana, Fragilaria crotonensis, Synedra acus, Aulacoseria granulata was dominant species in summer, and Aulacoseria granulata, Cyclotella meneghiniana, Fragilaria crotonensis was dominant species in autumn. In the community analysis, diversity index and dominant index were higher May~July and December~February, respectively. Also, diversity index and dominant index were decreased and increased with proceeding from middle part to lower part.

Characteristics of Nitro-nutrients and Phytoplankton Dynamics in the Yeongsan River after Weir Construction (보 건설 이후 영산강 보 구간에서의 질소계열 영양염류 및 식물플랑크톤 동태)

  • Seo, Kyung-Ae;Na, Jeong-Eun;Ryu, Hui-Seong;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2018
  • Insomuch as it is important to manage water quality, from the perspective of water management, it is essential to understand the effect of the weirs on water quality and phytoplankton dynamics in various regions. The purpose of this study is to investigate the characteristics of nitro-nutrients, as well as occurrences and succession patterns of phytoplankton, in the river sections of the two weirs in the Yeongsan River for the five years (from 2012 to 2016) after the weir construction. In respect to this data, the average water temperature measured at the representative point in the section of the Seungchon Weir ($17.1^{\circ}C$) was higher than that of the Juksan Weir ($16.6^{\circ}C$) by comparison. By way of an analysis of this data, it was found that the water quality variables such as, organic matter, nitrogen nutrients and phosphorus nutrients were improved gradually during the period, but the degree of the improvement differs as noted and measured between the weirs. Under the circumstances, it is especially noted that the $NH_3-N$ concentration was higher for the point of the Seungchon Weir (2.204 mg/L) than that of the Juksan Weir (1.157 mg/L). This indicates that effluent as seen from sewage treatment plants and hydrological feature near the densely population area, could be the main cause for the incidence of water pollution in the upstream section of the Seungchon Weir. Additionally, the phytoplankton analysis showed that a relative abundance of diatoms and green algae were 56.9 % and 25.8 % respectively. However, it is noted that the cyanobacteria was measured lower as 10.7 %. Also, in the study sites cell density and occurrence frequency of cyanobacteria were relatively lower than compared to the same measurements noted in other rivers.

Development and Succession of Marine Fouling Organisms on Artificial Substrata (인조기판 위에서 해양 부착생물의 발달 및 천이)

  • 심재형;정문섭
    • 한국해양학회지
    • /
    • v.22 no.4
    • /
    • pp.257-270
    • /
    • 1987
  • Fouling communities developing in Jinhae Harbor and Masan Bay were studied by slide and panel immersion test during the period from Dec., 1982 to Nov., 1983. The total viable count of bacteria was estimated more than 1.7${\times}$ 10$\^$4/CFU/$\textrm{cm}^2$ after 15 days of immersion and 46 taxa of benthic diatoms were classified in micro-community. Progressional change of fouling communities was clearly shown and dominant diatom species are Licmophora flavellata, Navicula grevillei, and Nitzschia closterium Major macrofouling organisms are Mytilus edulis, Balanus amphitrite amphitrite, Hydroides ezoensis, and Celleporina sp. Wet weight production of macrofouling organisms exceeds 500g/100cm$\^$2/ after 5months of immersion. Regional defferences in community development are clearly shown in two study areas, and mainly due to the disparities of physicochemical stability and nutritional status of ambient water. Seasonality of larvae and the growth rate are the important factors in fouling community development. Overall process of community development is as follow : bacteria and diatoms-multicellular algae-barnacle, mussels and polychaete-sponge, anemone and ascidian.

  • PDF

Annual Fluctuation (2000 ${\sim}$ 2003) of Water Quality and Cyanobacterial Abundance in the Lower Part of Han-River (한강 하류의 남조류 및 환경요인의 연간 (2000 ${\sim}$ 2003) 변화에 대하여)

  • Suh, Mi-Yeon;Kim, Baik-Ho;Bae, Kyung-Seok;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.181-187
    • /
    • 2005
  • For 4 years (2000 ${\sim}$ 2003), annual fluctuations of standing crops of cyanobacteria and physicochemical factors were examined at five sites from Bridge of Seungsoo to Bridge of Seungsan in the lower part of Han River. The cyanobacterial abundance (ND to 4,167 cells $mL^{-1}$) was strongly decreased during the heavy rains in every year. During the similar periods in 2003, cyanobacteria hardly observed, and comprised below of 10 percentage of total phytoplankton. In the period of little cyanobacteria, some green algae and diatom dominated the phytoplankton community, while the concentration of chlorophyll a has not largely change. These results indicate that heavy frequent precipitation strongly limited the growth of cyanobacteria, and lead an algal succession by the appearance of new algal groups.

Relationship between Distribution of the Dominant Phytoplankton Species and Water Temperature in the Nakdong River, Korea (낙동강의 식물플랑크톤 우점종의 분포특성 및 수온과의 상관성)

  • Yu, Jae Jeong;Lee, Hye Jin;Lee, Kyung Lak;Lyu, Heuy Seong;Whang, Jeong Wha;Shin, La Young;Chen, Se Uk
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.247-257
    • /
    • 2014
  • The construction of eight large weirs in the Nakdong River, Korea, caused a decrease in the water flow velocity and several physical changes to the water environment. Here, changes in phyto- and zooplankton communities and water quality in the areas near the eight weirs were investigated from 2011 to 2013, and relationships between phytoplankton abundances and environmental factors were analyzed. Special emphasis was given to the succession patterns in algal abundance based on temperature fluctuations. At the eight weirs, 24 dominant species were found. The most abundant phytoplankton species was Stephanodiscus sp. (39.4% of dominant frequency). Cyanobacteria of the genus Microcystis dominated during the summer, with an dominant frequency of 8.5% and cell abundance ratio of 36.6%. Significant correlations were observed between temperature and abundance of eight of the main dominant species; seven species showed positive correlations with temperature. Stephanodiscus sp., however, showed a negative correlation with temperature (r=-0.26, p<0.01). In addition, this species showed a significant negative correlation with the dominant algal species-Aulacoseira granulata and Aphanizomenon flos-aquae, with the zooplankton Copepoda and with Cladocera. On the contrary, seven other dominant species of algae showed significant positive correlations with zooplankton. Thus, we showed that the seasonal succession of plankton communities in the Nakdong River was related to the water temperature changes.

Effects of Environmental Factors on Phytoplankton Succession and Community Structure in Lake Chuncheon, South Korea (환경요인이 춘천호의 식물플랑크톤 천이 및 군집구조에 미치는 영향)

  • Baek, Jun-Soo;Youn, Seok-Jea;Kim, Hun-Nyun;Sim, Youn-Bo;Yoo, Soon-Ju;Im, Jong-Kwon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Effects of environmental factors on phytoplankton succession and community structure were studied in Lake Chuncheon located in Bukhan River, South Korea. The data were sampled at three sites such as CC1 (lower side), CC2 (middle side), and CC3 (upper side of Lake Chuncheon) from 2014 to 2017. The annual average precipitation in Lake Chuncheon was 992 mm during the study period (2014~2017), and the annual precipitation was lower than 800 mm in 2014 and 2015. The annual average water temperature, total phosphorus (TP), and total nitrogen (TN) ranged from 17.0 to $21.1^{\circ}C$, 0.012 to $0.019mg\;L^{-1}$, and 1.272 to $1.922mg\;L^{-1}$, respectively. The TN concentration was relatively high in 2015 compared with the other study years, as a drought continued from 2014 to 2015. When comparing the correlation between precipitation and environmental factors, water temperature (p<0.01) and TP(p<0.05) showed positive correlations with rainfall. The average numbers of phytoplankton cells by branch were 2,094, 2,182, and $3,108cells\;mL^{-1}$ in CC1, CC2, and CC3, respectively. CC3 is considered advantageous for phytoplankton growth, even in small pollution sources due to low water depth. As a result of analyzing the relationship between precipitation and phytoplankton, the correlation between the two was shown to be high for 2016 (p<0.01) and 2017 (p<0.05), which is when precipitation was high. However, the correlation was not clear to 2014 and 2015. The relationship between water temperature and phytoplankton indicated a negative correlation with diatoms (p<0.01), yet positive correlations with green algae (p<0.01) and cyanobacteria (p<0.01). Diatoms increased in spring and autumn, which are characterized by low water temperature, and green algae and cyanobacteria increased in summer, when the water temperature is high. Our findings provide a scientific basis for characteristics of phytoplankton and water quality and management at the Lake Chuncheon.