• Title/Summary/Keyword: alcoholic liver injury

Search Result 51, Processing Time 0.025 seconds

Pharmacological Analyses of HIMH0021 Extracted from Acer Tegmentosum and Efficacy Tests of Steatohepatitis and Hepatic Fibrosis in NASH/ASH (산겨릅나무로부터 추출된 HIMH0021의 알콜성·비알콜성 지방간염 질환에서의 약리학적 분석 및 지방간염 및 간섬유화 억제능 평가)

  • Ji Hoon Yu;Yongjun Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.5-5
    • /
    • 2021
  • Alcoholic and nonalcoholic steaohepatitis is a leading form of chronic liver disease with few biomakers ad treatment options currently available. a progressive disease of NAFLD may lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Recently, we extracted HIMH0021, which is an active flavonoid component in the Acer tegmentosum extract, has been shown to protect against liver damage caused by hepatic dysfunction. Therefore, in this study, we aimed to investigate whether HIMH0021 could regulate steatohepatitis and liver fibrosis during alcoholic or nonalcoholic metabolic process. HIMH0021, which was isolated from the active methanol extract of A. tegmentosum, inhibited alcohol-induced steatosis and attenuated the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) during hepatocellular alcohol metabolism, both of which promote lipogenesis as well as liver inflammation. Treatment with HIMH0021 conferred protection against lipogenesis and liver injury, inhibited the expression of cytochrome P4502E1, and increased serum adiponectin levels in the mice subjected to chronic-plus-binge feeding. Furthermore, in hepatocytes, HIMH0021 activated fatty acid oxidation by activating pAMPK, which comprises pACC and CPT1a. These findings suggested that HIMH0021 could be used to target a TNFα-related pathway for treating patients with alcoholic hepatitis.

  • PDF

Effects of Shiryung-tang Extract on the Liver Injury induced by Ethanol in Rats (시령탕(柴苓湯)이 에탄올 투여로 유발된 흰쥐의 간손상에 미치는 방어효과)

  • Kim, Bum Hoi;Choi, Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.611-616
    • /
    • 2013
  • Alcoholic liver disease (ALD) is a major cause of morbidity and mortality around the world. Although much progress has been made in understanding the pathogenesis of ALD, there remains no effective therapy for it. Accumulated evidence indicates that oxidative stress is the main pathological factors in the development of ALD. Ethanol administration causes accumulation of reactive oxygen species (ROS), including superoxide, hydroxyl radical, and hydrogen peroxide. ROS, in turn, cause lipid peroxidation of cellular membranes, and protein and DNA oxidation, which results in hepatocyte injury. In addition to pro-oxidants formation, antioxidants depletion caused by ethanol administration also results in oxidative stress. The objective of this study is to investigate the effects of Shiryung-tang extract on the chronic alcoholic liver injury induced by EtOH. Male Sprague Dawley rats were used in this study. All rats were maintained under standard laboratory conditions ($23{\pm}1^{\circ}C$, 12h light/12h dark cycles). All animals (n=30) were randomly divided into following groups: (1) Normal group, treated with distilled water (n=10); (2) Control group, treated with ethanol (n=10); (3) Sample group, treated with ethanol + pharmacopuncture (n=10). For oral administration of ethanol in Control and Sample group, the ethanol was dissolved in distilled water in concentrations of 25%(v/v). Throughout the experiment of 8 week, the rats were allowed free access to water and standard chow. Sample group were administrated by Shiryung-tang extract daily for 8 weeks. Control group were given normal saline for same weeks. As a results, the oral administration of ethanol for 8 weeks leads to hepatotoxicity. The levels of hepatic marker such as HDL-cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase were altered. The ethanol also increased lipid peroxidation and depletion of antioxidant enzyme activities as well as hepatic tissue injury. However, the treatment of Shiryung-tang extract prevented all the alterations induced by ethanol and returned their levels to near normal. These data suggest that Shiryung-tang extract could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration. Therefore, Shiryung-tang extract can be a candidate to protect against EtOH-induced liver injury.

The Effects of Ecklonia stolonifera Extracts on Improvement of Hepatic Function: a Double-Blind, Randomized, Placebo-Controlled Clinical Study (곰피추출물의 간기능 개선 효과 평가를 위한 12주, 무작위배정, 이중맹검, 위약-대조 인체적용시험)

  • Kim, Junghee;Kim, Eun Jin;Kang, Dahye;Kim, Hyung-Bin;Jang, Jae Young;Om, Ae-Son;Kim, Jongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.198-205
    • /
    • 2022
  • Hepatic diseases are divided into two types: alcoholic and non-alcoholic. Non-alcoholic liver injury finally induces fatty liver and damages liver function. Many studies have demonstrated that Ecklonia stolonifera has antioxidative, anti-inflammatory, and hepatoprotective activities. We conducted a 12-week double-blind, placebo-controlled, randomized trial to examine the efficacy of E. stolonifera extracts (ESE) on biochemical markers of hepatic function. Sixty-five subjects with mild or moderate liver injuries were randomly allocated to receive either 420 mg/d of ESE or a placebo for 12 weeks. Fifty-five participants completed the trial. No significant adverse events were observed among the subjects during the study. The primary end points were changes in plasma levels of aspartate transaminase (AST), alanine transaminase (ALT), and γ-glutamyltransferase (γ-GT). The secondary end points were changes in lipid profile levels, including total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL). Compared with the baseline, AST and ALT levels decreased significantly in the ESE group compared to those in the placebo group (P<0.001). In addition, γ-GT levels in the ESE group were significantly lower than those in the placebo group (P=0.016). There were no differences in the TC, TG, HDL, and LDL levels between groups. In conclusion, ESE consumption for 12 weeks improved liver parameters in subjects with liver injury. Regular consumption of ESE could maintain liver health in individuals at risk of hepatic damage.

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Min Ju Kim;Joon Hurh;Ha-Rim Kim;Sang-Wang Lee;Hong-Sig Sin;Sang-Jun Kim;Eun-mi Noh;Boung-Jun Oh;Seon-Young Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.

Effects of Dietary Methionine and Folate Supplementation in Ethanol-Fed Rats

  • Mun, Ju-Ae;Min, Hye-Sun
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Chronic alcohol consumption is associated with perturbation of hepatic metabolism of sulphur-containing amino acid. The goal of present study was to evaluate the influence of dietary supplementation of methionine or folate to chronically ethanol-fed mts on the metabolism of sulfur-containing amino acids and one-carbon metabolism. Sprague-Dawley male mts were fed Lieber-Decarli liquid diet with 0% ethanol (control), 36% ethanol (E), 36% ethanol combined with methionine supplement (EM) or folate supplement (EF) for 8 weeks. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma folate and homocysteine (Hcy), urinary excretion of folate and formiminoglutamate were investigated after feeding experimental diets. Growth was retarded by 36% ethanol consupmtion (E, EM and EF) (p<0.01). Liver total fat (p<0.05) and plasma ALT (P<0.01) were increased by methionine supplementation (EM), implicating fatty liver and liver injury. Liver folate was increased slightly by folate supplementation (EF) (p=0.077). Urinary folate loss was increased 2.3 fold by ethanol consumption (E) and 17.2 fold by folate supplementation (EF), while decreased by methionine supplementation (EM) (p<0.000l). Plasma Hcy was increased 1.9 fold by methionine supplementation (EM) in ethanol-fed mts (p<0.05), which was related with decreased methionine synthase activity (p<0.05). Hepatic SAM/SAH ratio was depressed by methionine supplementation in ethanol-fed mts (EM) (p<0.05). Urinary formininoglutamate (Figlu) excretion after histidine loading was increased by ethanol ingestion and reduced by methionine supplementation (p<0.00l). Based on these data, methionine supplementation appears to accelerate histidine oxidation. In conclusion, dietary supplementation of methionine to ethanol-fed mts exacerbates alcoholic liver injury possibly by complicating sulphur-containing amino acid metabolism, as while it may have beneficial effects on folate and histidine metabolism.

Effects of Galhwahyejung-tang (GHT) on Protection for Alcohol-induced Liver Injury

  • Ahn Tae-Kyu;Shin Jang-Woo;Cho Chong-Kwan;Cho Jung-Hyo;Yoo Hwa-Seung;Lee Yeon-Weol;Lee Nam-heon;Yun Dam-hee;Son Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.76-84
    • /
    • 2005
  • Objective: The purpose of this study was to examine the protective efficacy of GHT on alcoholic liver injury. Methods: We measured the rate of alcohol oxidation, serum level of liver enzyme, lipid peroxidation level in liver tissue, and inflammatory related cytokine expressions in the liver. Results : GHT showed liver protective effects, lowered the levels of AST and LDH in serum and inhibited lipid peroxidation in liver tissue, and enhanced alcohol oxidation. GHT treatment up-regulated IL-10 in the liver, whereas it down­regulated $TNF-\alpha,\;TGF-\beta$, and Fas ligand. Conclusion : From these results, GHT is presumed to work in the liver in protective roles not through the pathway of alcohol metabolism but mainly by anti-inflammation activity in our model.

  • PDF

The Effects of Shihosogan-san on Alcohol-induced Muscle Atrophy in Rats (흰쥐의 만성 알콜성 근위축에 시호소간산(柴胡疎肝散)이 미치는 효과)

  • Kim, Bum Hoi
    • Herbal Formula Science
    • /
    • v.24 no.4
    • /
    • pp.311-321
    • /
    • 2016
  • Chronic or acute alcohol abuse often leads to liver injury associated with alcoholic hepatitis, liver fibrosis, cirrhosis, and liver cancer. In addition to the liver, alcohol abuse also induces a variety of other tissue injuries including pancreatitis, cardiomyopathy, neurotoxicity and muscle loss. Chronic skeletal muscle myopathy, independent of peripheral neuropathy, is well recognised in alcoholic patients. Several mechanisms may be involved in the pathogenesis of alcoholic myopathy. Ethanol is a potent inhibitor of muscle protein synthesis. Gastrocnemius and plantaris muscles are Type II fiber-predominant and usually considered representative of the musculature as a whole. Whereas, soleus muscle is Type I fiber predominant. Shihosogan-san is a traditional Korean medicine that is widely employed to treat indigestion and liver diseases. Muscle diseases are often related to liver diseases and conditions. We therefore tested the hypothesis that treatment with Shihosogan-san could ameliorate the ethanol-induced changes in muscle protein synthesis. Young male Sprague-Dawley rats were orally given 25% ethanol (5ml/kg, body weight) daily with Ethanol for 28 days. Normal group was similarly administrated with saline. In Shihosogan-san treated group, rats were orally administrated Shihosogan-san extract, and rats of EtOH group were given with the vehicle only. After 4 week, the morphology of gastrocnemius and plantaris muscles were assessed by hematoxylin and eosin staining. For comparative purposes, liver function was also investigated. The muscles from rats of EtOH group displayed a significant reduction in average cross section area compared to Normal group. Shihosogan-san treated group had increased fiber compared to the EtOH group. Moreover, Shihosogan-san treated group compared with EtOH group showed significantly decreased pro-apoptotic BAX expression and increased anti-apoptotic Bcl-2 expression. In conclusion, Shihosogan-san extract showed ameliorating effects on chronic alcohol toxicity in skeletal muscle.

Effects of chronic alcohol and excessive iron intake on mitochondrial DNA damage in the rat liver (만성 알코올과 철분의 과잉 섭취가 흰쥐의 간 세포 미토콘드리아 DNA 손상에 미치는 영향)

  • Park, Jung-Eun;Lee, Jeong-Ran;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.48 no.5
    • /
    • pp.390-397
    • /
    • 2015
  • Purpose: In this study, we investigated the effects of chronic alcohol and excessive iron intake on mitochondrial DNA (mtDNA) damage and the progression of alcoholic liver injury in rats. Methods: Twenty-four Sprague-Dawley male rats were divided into four groups (Control, EtOH, Fe, and EtOH + Fe), and fed either control or ethanol (36% of total calories) liquid diet with or without 0.6% carbonyl iron for eight weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, liver malondialdehyde concentrations were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. The integrity of the hepatic mtDNA and nuclear DNA was measured by long-range PCR. The gene expression levels of cytochrome c oxidase subunit 1 (Cox1) and NADH dehydrogenase subunit 4 (Nd4) were examined by real-time PCR. Results: Serum ALT and AST activities were significantly higher in the EtOH+Fe group, as compared to the Control group. Similarly, among four groups, liver histology showed the most severe lipid accumulation, inflammation, and necrosis in the EtOH + Fe group. PCR amplification of near-full-length (15.9 kb) mtDNA showed more than 50% loss of full-length product in the liver of the EtOH + Fe group, whereas amounts of PCR products of a nuclear DNA were unaffected. In addition, the changes in the mtDNA integrity showed correlation with reductions in the mRNA levels of mitochondrial gene Cox1 and Nd4. Conclusion: Our data suggested that the liver injury associated with excessive iron and alcohol intake involved mtDNA damage and corresponding mitochondrial dysfunction.

Hepatoprotective Effect of Aged Black Garlic Extract in Rodents

  • Shin, Jung Hyu;Lee, Chang Woo;Oh, Soo Jin;Yun, Jieun;Kang, Moo Rim;Han, Sang-Bae;Park, Heungsik;Jung, Jae Chul;Chung, Yoon Hoo;Kang, Jong Soon
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • In this study, we investigated the hepatoprotective effects of aged black garlic (ABG) in rodent models of liver injury. ABG inhibited carbon tetrachloride-induced elevation of aspartate transaminase (AST) and alanine transaminase (ALT), which are markers of hepatocellular damage, in SD rats. D-galactosamine-induced hepatocellular damage was also suppressed by ABG treatment. However, ABG does not affect the elevation of alkaline phosphatase (ALP), a marker of hepatobilliary damage, in rats treated with carbon tetrachloride or D-galactosamine. We also examined the effect of ABG on high-fat diet (HFD)-induced fatty liver and subsequent liver damage. ABG had no significant effect on body weight increase and plasma lipid profile in HFD-fed mice. However, HFD-induced increase in AST and ALT, but not ALP, was significantly suppressed by ABG treatment. These results demonstrate that ABG has hepatoprotective effects and suggest that ABG supplementation might be a good adjuvant therapy for the management of liver injury.

Effect of Zinc-enriched Yeast FF-10 Strain on the Alcoholic Hepatotoxicity in Alcohol Feeding Rats

  • Cha, Jae-Young;Heo, Jin-Sun;Cho, Young-Su
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1207-1213
    • /
    • 2008
  • The possible protective effects of highly zinc-containing yeast Saccharomyces cerevisiae, FF-10 strain, isolated from tropical fruit rambutan on acute alcoholic liver injury in rats were evaluated. Zinc concentration in this strain was 30.6mg%. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and $\gamma$-glutamyl transpeptidase ($\gamma$-GTP) were highly increased when alcohol was treated, relative to the normal rats. Also, a highly significant increase in the blood alcohol and acetaldehyde levels by alcohol treatment was observed. Administration of FF-10 strain markedly prevented alcohol-induced elevation of the activities of serum ALT, AST, and $\gamma$-GTP, and the levels of blood alcohol and acetaldehyde, and these reduced levels reached to that of normal rats. As compared with alcohol treated control rats, the FF-10 strain supplementation showed highly decreased the triglyceride concentration in serum. Alcohol treatment induced the marked accumulation of small lipid droplets, hepatocytes necrosis, and inflammation, but FF-10 strain administration attenuated to alcohol-induced accumulation of small lipid droplets and hepatocyte necrosis in the liver. Therefore, the current finding suggests that zinc-enriched yeast FF-10 strain isolated from tropical fruit rambutan may have protective effect against alcohol-induced hepatotoxicity.