• Title/Summary/Keyword: alcohol oxidase sensor

Search Result 8, Processing Time 0.022 seconds

Determination of Ethanol in Alcoholic Beverages by Alcohol Oxidase Sensor (Alcohol oxidase 효소센서를 이용한 알코올 음료 중의 에탄올 정량)

  • Lee, Ok-Kyung;Kim, Tai-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.266-269
    • /
    • 1995
  • In order to measure alcohol contents with speed and accuracy, alcohol sensor was prepared. Alcohol sensor was made by connecting with oxygen electrode after immobilized alcohol oxidase on nylon net with glutaraldehyde. Alcohol was determined by changing the rate of dissolved oxygen consumption using D.O. analyzer. Alcohol contents in alcoholic beverages were determined under the optimum conditions. The results were 0.71% in low-alcohol beverage, $4{\sim}5%$ in beers, 10.06% in wine, 16.12% in chungju, 25.71% in soju, and 6.18% in takju, respectively. The values by alcohol sensor showed an excellent correlation(r=0.999) with GC method.

  • PDF

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

Preparation and Characteristics of a Single-layer PVA Laminated CTA/PCL Membrane for Oxygen Biosensor Electrode (산소센서용 CTA/PCL 효소고정화막과 반투막을 단일화한 PVA적층막의 제조 및 특성)

  • Seo, Jong-Won;Kim, Tae-Jin;Jeong, Yong-Seob;Yoon, Jeong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • The oxygen electrode of a biosensor needs enzyme immobilized membrane and a dialysis membrane to measure the oxygen concentration that remains after an enzyme reacts with its substrate. Accodingly, a single-layer PVA laminated CTA/PCL membrane was developed as an oxygen biosensor electrode. The enzymes were immobilized on a cellulose triacetate/polycarprolactone membrane using the 1,1'-carbonyl diimidazole(CDI) method, and then laminated with polyvinyl alcohol, aldehyde and acid. The alcohol oxidase and PVA laminated CTA/PCL membrane was tested with various concentration of enzyme substrates using a Yellow Springs Instrument(YSI) oxygen sensor. Under 5-10mmol substrates produced $0.37{\sim}0.83{\mu}A$(r=0.995) currents, and ater 8 weeks the glucose oxidase activity remained at about 56%, while the other activities remained very low. A SEM indicated a smooth surface and tightly attached PVA on the enzyme-immobilized CTA/PCL membranes.

  • PDF

Development of Biosensor for Simultaneous Determination of Glucose, Lactic Acid and Ethanol (포도당, 젖산 및 에탄올의 동시 측정용 바이오센서의 개발)

  • Kim, Jung-Ho;Rhie, Dong-Hee;Kim, Tae-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.22-34
    • /
    • 1998
  • The purpose of this study is to develop biosensor for determination of glucose, lactate, and ethanol in foods and food-stuffs simultaneously. The multiple cathode system was prepared with an oxygen electrode having one anode and hexagonal cathode. Glucose oxidase, mutarotase, lactate oxidase, alcohol oxidase and catalase were used for immobilization to determine glucose, lactate, and ethanol. These components including ethanol were simultaneously determined by the immobilized enzymes in the multiple cathode system. The determination of the components by enzyme sensor was based on the maximum slope of oxygen consumption from enzyme reaction of each sensor part. The response time for analysis was 1 min. The optimum condition for glucose, lactate and ethanol sensor was found to be 0.1 M potassium phosphate buffer, pH 7.0 at $40^{\circ}C$. Interferences of various sugars and organic acids were investigated. Less than 10% of error was found in determination of the components except organic acids. This difference was compensated by the modified equation. This system was confirmed by conventional methods. It was concluded that the multiple cathode system of this study is for an effective method to determine sugar, organic acid, ethanol simultaneously in foods.

  • PDF

Glucose Sensing Properties of Electrospinning-Synthesized ZnO Nanofibers (전기방사로 합성된 산화아연 나노섬유의 Glucose 감응특성)

  • Choi, Jong-Myoung;Byun, Joon-Hyuk;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.655-658
    • /
    • 2015
  • The development of glucose biosensors has been attracting much attention because of their importance in monitoring glucose in the human body; such sensors are used to diagnose diabetes and related human diseases. Thanks to the high selectivity, sensitivity to glucose detection, and relatively low-cost fabrication of enzyme-immobilized electrochemical glucose sensors, these devices are recognized as one of the most intensively investigated glucose sensor types. In this work, ZnO nanofibers were synthesized using an electrospinning method with polyvinyl alcohol zinc acetate as precursor material. Using the synthesized ZnO nanofibers, we fabricated glucose biosensors in which glucose oxidase was immobilized on the ZnO nanofibers. The sensors were used to detect a wide range of glucose from 10 to 700 M with a sensitivity of $10.01nA/cm^2-{\mu}M$, indicating that the ZnO nanofiber-based glucose sensor can be used for the detection of glucose in the human body. The control of nanograins in terms of the size and crystalline quality of the individual nanofibers is required for improving the glucose-sensing abilities of the nanofibers.

Disposable Type Electrochemical Ethanol Sensor (일회용 전기화학적 에탄올 센서)

  • Kim, Moon Hwan;Yoo, Jae Hyun;Oh, Hyun Joon;Cha, Geun Sig;Nam, Hakhyun;Park, Sung Woo;Kim, Young Man
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 1999
  • A single use, screen-printed sensor for the measurement of liquid phase ethanol was developed and its electrochemical performance was investigated. Disposable type edthanol sensor was fabricated by serially screen printing the carbon paste, silverd pasted and insulator inlon a polyester substrate to pattern working and reference electrode sites and electrical contact. Alcohol dehydrogenase(ADH) or alcohol oxidase(AOD) together with appropriate electron transfer mediators was immobilized on the working electrode. To improve the sensitivity and reproducibility of carbon paste electrode, some pretreatment procedures were applied and their resultant electrochemical performance was examined. The disposable type electrochemical ethanol sensor developed in this study conveniently determines the ethanol in liquid samples such as blood and in fermentation process.

  • PDF

Fabrication and Characteristics of FET Type Semiconductor Urea and Glucose Sensor Employing Photolithography Techniques (사진식각기술을 이용한 FET형 반도체 요소 및 포도당센서의 제조와 그 특성)

  • Cho, Byung-Woog;Kim, Chang-Soo;Seo, Hwa-Il;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 1992
  • pH-ISFETs, the semiconductor pH sensors, were combined with immobilized enzyme membranes to prepare FET type urea and glucose sensors and its operational characteristics were investigated. Photolithography techniques were applied to immobilize enzymes on the $H^{+}$ sensing membrane of the pH-ISFET with photo-sensitive polymers, PVA-SbQ. Fabricated urea and glucose sensors could determine $0.5{\sim}50{\;}mg/dl$ urea concentrations and $10{\sim}1000{\;}mg/dl$ glucose concentrations, respectively.

  • PDF

Planar microchip-based lactate biosensor (평면 소자형 락테이트 바이오센서)

  • Ha, Jeonghan;Huh, Hwang;Kang, Tae Young;Lee, Yong Seok;Yoon, Soon Ho;Shin, Jungwon;Nam, Hakhyun;Cha, Geun Sig
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.482-489
    • /
    • 2006
  • Two electrode-based lactate biosensor was prepared by immobilizing lactate oxidase (LOD) obtained from pediococcus species in a poly(vinyl alcohol). Hydrogen peroxide ($H_2O_2$) produced by the reaction of lactate and LOD was detected on the Pt-black that was electrochemically deposited on the Au electrode. Sensors fabricated with Pt-black deposited Au electrode provided a high current of $H_2O_2$ oxidation at a substantially lowered applied potential (+300 mV vs. Ag/AgCl), resulting in reduced interferences from easily oxidizable species such as ascorbic acid, acetaminophen, and uric acid. An outer membrane is formulated by adjusting water uptake of hydrophilic polyurethane (HPU). The sensor performance was evaluated in vitro with both flow-through arrangement and static mode. The sensor showed a linear range from 0.1 mM to about 9.0 mM in 0.05 M phosphate buffer (pH 7.6) containing 0.05 M NaCl. Storing the sensors prepared in this work at $4^{\circ}C$ buffer solution while not in use, they provided same electrochemical performance for more than 25 days.