• Title/Summary/Keyword: alcohol metabolizing activities

Search Result 75, Processing Time 0.034 seconds

Anti-inflammatory Effects of Black Cherry Tomato (Lycopersicon esculentum M.) Juice on LPS-induced RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과)

  • Jung, Kyung Im;Ha, Nayeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.569-576
    • /
    • 2018
  • This study was carried out to investigate the antioxidative, nitrite-scavenging, alcohol-metabolizing, and anti-inflammatory effects of black-cherry tomato juice (BCTJ) on LPS-induced RAW 264.7 cells. The total phenol content of the BCTJ was $156.83{\mu}g\;tannic-acid-equivalent/ml$. The antioxidative effects of BCTJ were measured using DPPH radical-scavenging activity and SOD-like assay. DPPH radical-scavenging activity of BCTJ was increased in a dose-dependent manner (p<0.05) and was 83.39% at 40%. SOD-like activity of BCTJ was 22.01% at 100%. The effects of BCTJ on alcohol-metabolism were determined by measuring generations of reduced nicotinamide adenine dinucleotides (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities were 198.87% and 181.89% at 40%, respectively. Nitric scavenging activities of BCTJ were 85.06%, 58.25%, and 43.68% at pH values 1.2, 3.0, and 6.0, respectively, at 50%. Anti-inflammatory effects were examined in LPS-stimulated RAW 264.7 cells. Nitric-oxide production was reduced to 83.55% by the addition of BCTJ at 10%. These results suggest that black-cherry tomato juice has great potential as a resource for natural health products.

Detoxification Mechanism and Isoenzyme Pattern Changes against Cadmium in Rhizopus oryzae (Rhizopus oryzae의 카드뮴 해독기작과 이에 관련된 동위효소의 변화 양상)

  • Lee, Ki-Sung;Kim, Young-Ho;Park, Young-Sik;Park, Yong-Keun
    • The Korean Journal of Mycology
    • /
    • v.23 no.1 s.72
    • /
    • pp.86-91
    • /
    • 1995
  • Isoenzymatic analysis related with cadmium adaptation and detoxifying mechanism were carried out upon Rhizopus oryzae. When cadmium was added into R. oryzae culture, activities of malate dehydrogenase (MDH) and glucose phosphate isomerase (GPI) related with carbohydrate metabolizing pathways were stimulated. Novel isoenzyme CAT-2 related with removing intracellular toxic peroxides, was induced lately and derepressed very highly. On the other hand, lactate-catabolizing enzymes such as lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) were repressed. These results strongly suggest that, under cadmium stress, much of derepression of enzymes relating with central metabolism such as TCA cycle that produces high yield of energy and relating with removal of toxic peroxides should be necessary.

  • PDF

A Difference in Ethanol Metabolism Between Premature and Young Adult Rats (미성숙 랫트와 젊은 성체 랫트간의 생체내 에탄올 대사의 차이)

  • Kim, Sung-Yeon;Kim, Sang-Kyum;Son, Young-Ran;Kim, Young-Chul
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.492-497
    • /
    • 1997
  • A difference in ethanol metabolism between premature and young adult rats was examined. Female SD rats, either 4wk or 12wk old, were injected with a single dose of ethanol (1.5g /kg) through jugular vein and the blood ethanol level was monitored for 300 min using a gas chromatographic method. Reduction of blood ethanol level per unit of time was less and the area under the blood concentration-time curve (AUC) was significantly greater in young adults compared to premature rats. Activity of hepatic alcohol dehydrogenase was not influenced by the age increase. Total cytochrome P-450, cytochrome $b_5$. or aminopyrine N-demethylation was not different between premature rats and young adult rats. However, p-nitrophenol hydroxylation and p-nitroanisole O-demethylation activities were significantly higher in premature rats. The relative liver weight was 45% greater in premature rats leading to an overall increase in ethanol metabolizing activity in these animals. The results indicate that the reduction in ethanol elimination in young adult rats appears to be mostly associated with the decrease in relative liver weight as the age of animals increases.

  • PDF

Hepatoprotective Evaluation of Ganoderma lucidum Pharmacopuncture: In vivo Studies of Ethanol-induced Acute Liver Injury

  • Jang, Sun-Hee;Cho, Sung-Woo;Yoon, Hyun-Min;Jang, Kyung-Jeon;Song, Chun-Ho;Kim, Cheol-Hong
    • Journal of Pharmacopuncture
    • /
    • v.17 no.3
    • /
    • pp.16-24
    • /
    • 2014
  • Objectives: Alcohol abuse is a public issue and one of the major causes of liver disease worldwide. This study was aimed at investigating the protective effect of Ganoderma lucidum pharmacopuncture (GLP) against hepatotoxicity induced by acute ethanol (EtOH) intoxication in rats. Methods: Sprague-Dawley (SD) rats were divided into 4 groups of 8 animals each: normal, control, normal saline pharmacopuncture (NP) and GLP groups. The control, NP and GLP groups received ethanol orally. The NP and the GLP groups were treated daily with injections of normal saline and Ganoderma lucidum extract, respectively. The control group received no treatment. The rats in all groups, except the normal group, were intoxicated for 6 hours by oral administration of EtOH (6 g/kg BW). The same volume of distilled water was administered to the rats in the normal group. Two local acupoints were used: Qimen (LR14) and Taechung (LR3). A histopathological analysis was performed, and the liver function and the activities of antioxidant enzymes were assessed. Results: GLP treatment reduced the histological changes due to acute liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase (ALT) enzyme; however, it had an insignificant effect in reducing the increase in aspartate aminotransferase (AST) enzyme. It also significantly ameliorated the superoxide dismutase (SOD) and the catalase (CAT) activities. Conclusion: The present study suggests that GLP treatment is effective in protecting against ethanol-induced acute hepatic injury in SD rats by modulating the activities of ethanol-metabolizing enzymes and by attenuating oxidative stress.

과일음료의 기능성

  • Hwang, Ja-Yeong
    • Proceedings of the Korean Society of Food and Cookery Science Conference
    • /
    • 2005.10a
    • /
    • pp.56-65
    • /
    • 2005
  • This study was purposed to investigate the antioxidative effects, the enzyme activity of the alcohol metabolizing and melanin production of Maesil(Prune mume). The antioxidant activity of Maesil(Prunu mume) was analyzed by measuring thiobarbituric acid reactive substances(TBARS value) and electron donating ability. And we investigated the changes of alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH) activity by measuring the maximum absorbency at 340nm in vitro and human study. The inhibitory effects of Maesil were investigated in vitro and in B-16mouse melanoma cells on melanin biosynthesis that is closely related to hyperpigmentation. The antioxidant activities for TBA values were 29.65% in ascorbicacid, 45.35% in BHT, 15.99% in extract of dehydrated maesil flesh(EDMF) and 25.00% in extract of dehydrated maesil juice(EDMJ). The electron donating abilities by DPPH were 96.69% in ascorbic acid, 77.82% in BHT, 34.25% in EDMF, and 42.99%in EDMJ. Electron donating abilities by DPPH in the presence of 0.02% EDMF and EDMJ were 53.21% and 59.19% respectively. Facilitating rates of ADH activity were 137.92, 131.58, 152.96, 218.70, 111.76, and 144.27% in maesil juice, 5, 10, and 15% GMT, and 0.5 and 1.0% aspartic acid, respectively. ALDH activity increased in the order of Maesil juice > ALDH > GMT > aspartic acid, and facilitating rate of ALDH activity in Maesil juice was the highest at 976.44%. Maesil extracts inhibited tyrosinase activity that converts dopa to dopachrome in the biosynthesis process. B-16 cells treated by Maesil extracts showed that the viability was over 80%. Maesil and maesil products in vitro and B-16 cells inhibited melanin production significantly.

  • PDF

Conjugation of Cyclohexane Metabolite in Liver Damaged Rats

  • Joh, Hyun-Sung;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • To evaluate an effect of pathological liver damage on the conjugation of cyclohexane metabolites, rats were pretreated with 50% $CCl_4$ dissolved in olive oil (0.1 ml/100 g body weight) 10 or 17 times intraperitoneally at intervals of every other day. On the basis of liver function, the animals pretreated with $CCl_4$ 10 times were identified as acutely liver damaged ones and the animals pretreated with $CCl_4$ 17 times were identified as severly liver damaged ones. To these liver damaged animals, cyclohexane (a single dose of 1.56 g/kg body weight, i.p.) was administered at 48 hr after the last injection of $CCl_4$. The rats were sacrificed at 4 or 8 hr after injection of cyclohexane. The cyclohexane metabolites, cyclohexanol (CH-ol), cyclohexane-1,2-diol (CH-1,2-diol), cyclohexane-1,4-diol (CH-1,4-diol), and their glucuronyl conjugates and cyclohexanone were detected in the urine of cyclohexane treated rats. The urinary concentration of cyclohexane metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. And liver damaged.ats, especially $CCl_4$ 17 times treated ones, had an enhanced ability of glucuronyl conjugation to CH-ol analogues compared with normal group. Futhermore, CH-1,2 and 1,4-diol were all conjugated with glucuronic acid in $CCl_4$ 17 times injected animals. On the other hand, the increasing rate of activities of hepatic cytochrome P450 dependent aniline hydroxylase, alcohol dehydrogenase and urine diphosphate glucuronyl transferase was higher in 17 times $CCl_4$-treated rats compared with normal and $CCl_4$ 10 times injected animals. Taken all together, it is assumed that an increased urinary excretion amount of cyclohexane metabolites in liver damaged rats might be caused by an increase in the activities of cyclohexane metabolizing enzymes. And enhanced conjugating ability of CH-ol in liver damaged animals and novel finding of conjugating form of CH-1,2 and 1,4-diol might be caused by increase in the activity of hepatic diphosphouridine glucuronyltransferase.

  • PDF

Effect of Ganoderma Lucidum Pharmacopuncture on Chronic Liver Injury in Rats

  • Jang, Sun Hee;Yoon, Hyun Min;Kim, Bum Hoi;Jang, Kyung Jeon;Kim, Cheol Hong
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • Objectives : Alcohol-related liver disease is a major cause of morbidity and mortality worldwide. The present study was undertaken to determine whether Ganoderma lucidum pharmacopuncture(GLP) could protect against chronic liver injury induced by ethanol intoxication in rats. Methods : Sprague-Dawley rats were divided into 4 groups: normal, control, normal saline pharmacopuncture(NP), and GLP, with 8 animals in each. Each group, except normal, received ethanol orally. The NP and GLP groups were treated daily with NP and GLP respectively. The control group was not treated. All rats except the normal group were intoxicated for 4 weeks by oral administration of EtOH(6 g/kg BW). Two acupuncture points were used: Qimen($LR_{14}$) and Taechung($LR_3$). Body weight, histopathological analysis, liver function, activities of antioxidant enzymes, and immunohistochemistry were assessed. Results : GLP reduced the histological changes due to chronic liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase(ALT) and aspartate aminotransferase(AST) enzymes. It significantly reversed the superoxide dismutase(SOD) and the catalase activities(CAT). It also significantly decreased BAX and increased Bcl-2 immunoreactivity expression. Conclusions : This study showed the protective efficacy of GLP against EtOH-induced chronic liver injury in SD rats by modulating ethanol metabolizing enzymes activity, attenuating oxidative stress, and inhibiting mitochondrial damage-mediated apoptosis.

Changes in Alcohol Dehydrogenase (ADH) and Acetaldehyde Dehydrogenase (ALDH) Activity during the Processing of Salt-Dried Rockfish Sebastes schlegeli (염건 조피볼락(Sebastes schlegeli) 제조 중 ADH 및 ALDH의 활성변화)

  • Shim, Kil Bo;Lee, Hyun Jin;Lee, So Jeong;Cho, Hyun Ah;Yoon, Na Young;Lim, Chi Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.594-599
    • /
    • 2012
  • The objective of this study was to determine the processing conditions for salt dried rockfish Sebastes schlegeli by sun drying and cold-air drying, as measured by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity. We processed salt dried rockfish samples. The salinity of rockfish samples was within 1% following salting with 25% salt brine for 3 h. The moisture content of salt dried rockfish was found to reduce linearly from 70.12 to 39.5 g/100 g over the same time interval. The water activities of salt dried rockfish by sun and cold-air drying were 0.94 and 0.87, respectively, after three days of drying. Acid values (AV) were 10.71 and 5.96 mg KOH/g, respectively, after the three day drying period. The ADH activity in a water extract from salt dried rockfish following sun and cold-air drying for 24 h was 228.5% and 226.1% at 13.3 mg/mL, respectively, and was higher than that when drying lasted for 48 and 72 h. The ALDH activity was not affected but both ADH and ALDH activity tended to decrease as the drying time increased from 24 to 72 h. The conditions of processing for the best quality of salt dried rockfish were determined to be drying with a cold-air system for 24 h. These results indicated that water extracts from salt dried rockfish have valuable biological attributes owing to the metabolizing of alcohol and can provide useful information for the design of drying systems for salt dried rockfish.

Evaluation of the Effects of Hangover-Releasing Agent Containing Vinegar Extract in Common Buckwheat and Tartary Buckwheat on Alcohol Metabolism and Hangover Improvement (일반메밀과 쓴메밀의 식초 추출물의 알코올 대사 및 숙취개선 효능 평가)

  • Su Jeong Kim;Hwang Bae Sohn;A Hyun Park;Jong Nam Lee;Su Hyoung Park;Jung Hwan Nam;Do Yeon Kim;Dong Chil Chang;Yul Ho Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.435-445
    • /
    • 2023
  • The aim of this study was to explore the effects of vinegar extract from seed of common buckwheat (Fagopyrum esculentum Moench) and seed of tartary buckwheat (F. tataricum Gaertner) on acute ethanol-induced hangover in Sprague-Dawley rats. Vinegar extract from buckwheat is rich choline, quercetin and its glycoside, rutin known as flavonoid antioxidants. The test extract containing buckwheat was proven to alleviate hangovers through a significant reduction in the concentration of alcohol and acetaldehyde in the context of an alcohol-induced hangover model. Hepatic alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were significantly higher in buckwheat vinegar-treated rats than in ethanol-treated rats. Moreover, tartary buckwheat vinegar upregulated antioxidant enzyme such as superoxide dismutase and Catalase activities in liver tissues. These results suggest that buckwheat vinegar extract could alleviate ethanol-induced hangover symptoms by elevating activities related to hepatic ethanol-metabolizing enzymes against ethanol induced metabolites, and in particular, tartary buckwheat should be further developed to be a novel anti-hangover material.

In vivo Physiological Activity of Mentha viridis L. and Mentha piperita L. (박하의 in vivo 생리활성)

  • Lee, Seung-Eun;Han, Hee-Sun;Jang, In-Bok;Kim, Geum-Soog;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.261-267
    • /
    • 2005
  • Alcohol metabolizing and antioxidant activity of Mentha species were investigated in rat liver. Fifty six Sprague Dawley rats were randomly divided into seven groups such as normal (ethanol excluded), negative control (40% ethanol (10 g/kg of body weight/day) fed), positive control (1 g Silymarin/kg of body weight/day with ethanol fed), two Mentha viridis extracts (0.2 g & 1 g M. viridis methanol ext./kg of body weight/day with ethanol fed) and two M piperita extracts (0.2 g & 1 g M. piperita methanol ext./kg of body weight/day with ethanol fed) groups. After 2 weeks, rats were sacrificed under ether. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GAH-px) and the content ofthiobarbituric acid reactive substance (TBARS) in the rat livers and the activity of glutamate pyruvate transferase (GPT) in serum were evaluated. From the analyses, 1 g M. viridis and 0.2 g M. piperita administrated groups showed higher ADH and ALDH activity than the other groups. Groups fed with 0.2 g and 1 g M. viridis ext. and 0.2 g M. piperita ext. showed higher CAT activity than the other groups. All the Mentha extract fed groups exhibited more effective in recovering Mn-SOD, GSH-px and GPT acitivities to a similar degree of normal group. TBARS contents of two M. viridis ext. fed group and 0.2 g M. piperita ext. fed group were higher than those of the other groups. M. viridis extract fed groups showed more effective in CAT and Mn-SOD activities than M. piperita extract groups at p < 0.05. Finally, it is concluded that both Mentha species have alcohol metabolizing and antioxidant activity and M viridis is more effective than M. piperita.