• Title/Summary/Keyword: alcohol dehydrogenase (ADH)

Search Result 219, Processing Time 0.028 seconds

A Biochemical Study on the Ethanol Metabolism in the Animal Body (동물 체내에서의 에탄올 대사에 관한 생화학적 연구)

  • Kwak, Hahn-Shik
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.29-58
    • /
    • 1991
  • Ethanol은 섭취량에 따라 간 대사에 여러가지 영향을 미치는 것으로 알려져 있다. 과량의 ethanol 섭취가 유해한 것은 ethanol 그 자체보다는 산화과정에서 생성된 acetaldehyde와 과량의 수소(NADH)에 기인한다. 과량의 NADH는 간 세포의 화학적 평형을 저해하고 대사이상을 초래한다. 본 연구에서는 in vitro 뿐만 아니라 in vivo에서 alcohol dehydrogenase(ADH), aldehyde dehydroge-nase(ALDH), microsomal ethanol oxidizing system(MEOS)에 미치는 인삼 사포닌의 영향을 조사하고, 간에서의 수소 평형, 간에서의 $[1^(-14)C]$-ethanol의 분포, ethanol의 acetaldehyde와 lipid로의 전환 등을 관찰하였다. 인삼 사포닌은 상기 효소외에도 ethanol 대상에 관련된 다른 효소들의 활성을 증가시키는 것으로 관찰되었으며 이는 동물 체내로부터 acetaldehyde와 과량의 수소를 신속히 제거하는 것으로 사료된다.

  • PDF

Inhibitory Effects of Angiotensin Converting Enzyme and α-Glucosidase, and Alcohol Metabolizing Activity of Fermented Omija (Schizandra chinensis Baillon) Beverage (오미자 발효음료의 알코올 분해능과 Angiotensin Converting Enzyme 및 α-Glucosidase 저해효과)

  • Cho, Eun-Kyung;Cho, Hea-Eun;Choi, Young-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.5
    • /
    • pp.655-661
    • /
    • 2010
  • The nutraceutical role of fermented omija (Schizandra chinensis) beverage (FOB) was determined through the analysis of fibrinolytic and alcohol metabolizing activities, nitrite scavenging activity, and angiotensin converting enzyme and $\alpha$-glucosidase inhibitory effects. Firstly, FOB increased fibrinolytic activity in a dose-dependent manner and indicated angiotensin converting enzyme inhibitory activity of 94.8% at 20% FOB (0.6 mg/mL). In addition, the inhibitory activities of FOB on $\alpha$-amylase and $\alpha$-glucosidase were determined to be 100% at 100% FOB (3 mg/mL) and 49% at 60% FOB (1.8 mg/mL), respectively. Nitrite scavenging activity of FOB was about 96.1%, 72.3%, and 68.3% on pH 1.2, 3.0, and 6.0 at 100% FOB, respectively. To determine influence of FOB on alcohol metabolism, the generating activities of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were measured. Facilitating rate of ADH activity was 70.3% at 50% FOB, but ALDH activity was not affected. These results revealed that FOB has a strong alcohol metabolizing activity, and fibrinolytic and nitrite scavenging activities and exhibits the angiotensin converting enzyme, $\alpha$-amylase, and $\alpha$-glucosidase inhibitory activities.

Antioxidant and Hangover Cure Effects of Compound Prescription Containing Phyllanthus emblica and Azadirachta Indica Leaf Extract (인디언구스베리와 님잎 추출물을 함유한 복합 처방의 항산화 및 숙취해소 효과)

  • Lee, Su-Bin;Joo, In-Hwan;Park, Jong-Min;Han, Su-Hyun;Wi, Young-Joon;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.5
    • /
    • pp.229-237
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant and hangover cure effects of compound prescription containing Phyllanthus emblica and Azadirachta Indica leaf extract (CP). In vitro experiments, HepG2 cells were induced oxidative stress by hydrogen peroxide (H2O2) and treated with CP at 50, 100, 200 ㎍/㎖ concentration. Antioxidant enzyme (superoxide dismutase (SOD), catalse (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) activity and glutathione (GSH) content were decreased by hydrogen peroxide-induced oxidative stress, but CP was increased that. In vivo experiments, experiment rats were orally administered alcohol 3 g/kg and, after 30 min administered CP 200 mg/kg. After 1 and 3 h of alcohol administration, blood was collected from the tail vein, while after 5 h, blood was collected from the heart. CP modulates alcohol dehydrogenase (ADH) and acetaldehyde level, thereby decreased alcohol level in serum. Also, CP decreased the levels of aspartate aminotransferase (AST) and alkaline phosphatase (ALP). These results suggest that CP has antioxidant effects and alleviates alcohol hangover symptoms.

Protective Effects of Branched-chain Amino Acid (BCAA)-enriched Corn Gluten Hydrolysates on Ethanol-induced Hepatic Injury in Rats (알코올성 간 손상을 유발한 흰쥐에 대한 고 분지아미노산 함유 옥수수 단백가수물의 간 기능 보호효과)

  • Chung, Yong-Il;Bae, In-Young;Lee, Ji-Yeon;Chun, Hyang-Sook;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.706-711
    • /
    • 2009
  • Hepatoprotective effects of corn gluten hydrolysates (CGH) were investigated in rats orally treated with ethanol (30%(v/v), 3 g/kg body weight/day) for 4 weeks. Six-week old Sprague-Dawley male rats were divided into four dietary groups: normal diet (N), alcohol diet (E), E+CGH 1% diet (CGH-1%), and E+CGH 3% diet (CGH-3%). Body weights and liver indices were not significantly different among the four groups. However, food intakes were lower in the CGH groups than in the normal group (p<0.05). The administration of CGH significantly reduced serum alkaline phosphatase activity by 30% compared to the alcohol diet group. Among the antioxidative enzymes assessed, catalase activity was significantly decreased by 79% in the CGH diet groups compared to the alcohol diet group. In comparison to the alcohol-treated group, aldehyde dehydrogenase activity was increased by 20%, while microsomal ethanol oxidizing system activity was decreased by 20% in the CGH-treated groups. Furthermore, the area under the curve of the blood acetaldehyde concentration versus time profile after the administration of ethanol was significantly lower for the CGH rats than for the ethanol or asparaginic acid treated groups. Thus, CGH seems to offer beneficial effects by protecting against ethanol-induced hepatotoxicity by improving the acetaldehyde-related metabolizing system.

Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Raoultella ornithinolytica BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway

  • Yuan, Haibo;Liu, Yanfeng;Lv, Xueqin;Li, Jianghua;Du, Guocheng;Shi, Zhongping;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1999-2008
    • /
    • 2018
  • The compound 2,5-furandicarboxylic acid (FDCA), an important bio-based monomer for the production of various polymers, can be obtained from 5-hydroxymethylfurfural (HMF). However, efficient production of FDCA from HMF via biocatalysis has not been well studied. In this study, we report the identification of key genes that are involved in FDCA synthesis and then the engineering of Raoultella ornithinolytica BF60 for biocatalytic oxidation of HMF to FDCA using its resting cells. Specifically, previously unknown candidate genes, adhP3 and alkR, which were responsible for the reduction of HMF to the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol), were identified by transcriptomic analysis. Combinatorial deletion of these two genes resulted in 85.7% reduction in HMF alcohol formation and 23.7% improvement in FDCA production (242.0 mM). Subsequently, an aldehyde dehydrogenase, AldH, which was responsible for the oxidation of the intermediate 5-formyl-2-furoic acid (FFA) to FDCA, was identified and characterized. Finally, FDCA production was further improved by overexpressing AldH, resulting in a 96.2% yield of 264.7 mM FDCA. Importantly, the identification of these key genes not only contributes to our understanding of the FDCA synthesis pathway in R. ornithinolytica BF60 but also allows for improved FDCA production efficiency. Moreover, this work is likely to provide a valuable reference for producing other furanic chemicals.

In vivo Physiological Activity of Mentha viridis L. and Mentha piperita L. (박하의 in vivo 생리활성)

  • Lee, Seung-Eun;Han, Hee-Sun;Jang, In-Bok;Kim, Geum-Soog;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.261-267
    • /
    • 2005
  • Alcohol metabolizing and antioxidant activity of Mentha species were investigated in rat liver. Fifty six Sprague Dawley rats were randomly divided into seven groups such as normal (ethanol excluded), negative control (40% ethanol (10 g/kg of body weight/day) fed), positive control (1 g Silymarin/kg of body weight/day with ethanol fed), two Mentha viridis extracts (0.2 g & 1 g M. viridis methanol ext./kg of body weight/day with ethanol fed) and two M piperita extracts (0.2 g & 1 g M. piperita methanol ext./kg of body weight/day with ethanol fed) groups. After 2 weeks, rats were sacrificed under ether. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GAH-px) and the content ofthiobarbituric acid reactive substance (TBARS) in the rat livers and the activity of glutamate pyruvate transferase (GPT) in serum were evaluated. From the analyses, 1 g M. viridis and 0.2 g M. piperita administrated groups showed higher ADH and ALDH activity than the other groups. Groups fed with 0.2 g and 1 g M. viridis ext. and 0.2 g M. piperita ext. showed higher CAT activity than the other groups. All the Mentha extract fed groups exhibited more effective in recovering Mn-SOD, GSH-px and GPT acitivities to a similar degree of normal group. TBARS contents of two M. viridis ext. fed group and 0.2 g M. piperita ext. fed group were higher than those of the other groups. M. viridis extract fed groups showed more effective in CAT and Mn-SOD activities than M. piperita extract groups at p < 0.05. Finally, it is concluded that both Mentha species have alcohol metabolizing and antioxidant activity and M viridis is more effective than M. piperita.

Heterologous Expression of Human Ferritin H-chain and L-chain Genes in Saccharomyces cerevisiae (재조합 효모를 이용한 사람 H-Chain 교 L-Chain Ferritin의 생산)

  • 서향임;전은순;정윤조;김경숙
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • Human ferritin H- and L-chain genes(hfH and hfL) were cloned into the yeast shuttle vector YEp352 with various promoters, and the vectors constructed were used to transform Saccharomyces cerevisiae 2805. Three different promoters fused to hfH and hfL were used: galactokinase 1 (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase(GPD) promoter and alcohol dehydrogenase 1(ADH1 ) promoter. SDS-polyacrylamide gel electrophoresis and Western blotting analyses displayed expression of the introduced hfH and hfL. In the production of both ferritin H and L subunits GAL1 promoter was more effective than GPD promoter or ADH1 promoter. Ferritin H and L subunits produced in S. cerevisiae were spontaneously assembled into its holoproteins as proven on native polyacrylamide gels. Both recombinant H and L-chain ferritins were catalytically active in forming iron core. When the cells were cultured in the medium containing 10 mM ferric citrate, the cell-associated concentration of iron was 174.9 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L and 148.8 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L but was 49.4 $\mu\textrm{g}$ Per gram(dry cell weight) in the wild type, indicating that the iron contents of yeast is improved by heterologous expression of human ferritin H-chain or L-chain genes.

Effect of Dietary Protein and Fiber on Ethanol-induced Hepatotoxicity in Rats (흰쥐의 에탄올성 간장해에 미치는 식이 단백질과 섬유소의 영향)

  • 조수열;박은미;이미경;장주연;김명주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.675-681
    • /
    • 1997
  • This study was conducted to investigate the effect of dietary protein and fiber levels on the activities of ethanol metabolizing enzymes of liver in ethanol-treated rats. Sprague-Dawley male rats were fed on diets containing two levels of protein(7, 20%/kg diet) and pectin(5, 10%/kg diet). In ethanol experiments, ethanol(25% v/v) was administered by oral intubation(5g/kg body weight) at the same time once a day Control animals received an isocaloric dose of sucrose. The rats were sacrificed after 5 weeks of feeding periods. Alcohol dehydrogenase and microsomal ethanol oxidizing system activities of hepatic tissue were increased more in ethanol-treated groups than in control groups. Increment of activities predominated in normal protein normal fiber group. Aldehyde dehydrogenase activity was decreased in ethanol-treated groups and significantly decreased in normal Protein normal fiber group. Cytochrome P-450 content was significantly increased in ethanol-treated groups and Predominated in normal protein groups. Xanthine oxidase activity was increased in ethanol-treated groups, but not significantly except normal protein normal fiber group. Glutathione content tended to increase in proportion to level of dietary protein and was higher in normal fiber groups than in high fiber groups, whereas it was decreased by ethanol treatment. Lipid Peroxide content was significantly increased in low Protein normal fiber groups.

  • PDF

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.