• Title/Summary/Keyword: alcalase

Search Result 212, Processing Time 0.029 seconds

Growth Characteristics, Bio-chemical Composition and Antioxidant Activities of Benthic Diatom Grammatophora marina from Jeju Coast, Korea

  • Affan, Abu;Karawita, Rohan;Jeon, Yu-Jin;Kim, Bo-Young;Lee, Joon-Baek
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.141-148
    • /
    • 2006
  • Benthic diatoms are known as a good food for shellfish in nature and in commercial hatchery of Jeju Island, Korea. Grammatophora marina is commonly found as dominant benthic micro-algae in Jeju coastal waters throughout the year. To know the best growth conditions of this species, culture was done in terms of three parameters; water temperature, salinity and nutrients. Each parameter was controlled by temperature of 15, 20 and 25°C; salinity of 25, 30 and 35 psu; and nutrient concentrations of 50, 100 and 200%. F/2 media was used with artificial seawater for the culture, which was continued for two weeks with L:D cycle 12:12 by using fluorescent light. Maximum specific growth rate was recorded 1.68 d–1 at temperature of 25°C with salinity of 35 psu and nutrient concentration of 200% on 6th day during the culture period. Maximum biomass was also observed 4.9 × 105 cells mL–1 in the same condition. This species may belong to the euryhaline and eutrophic habitat with warm condition. For nutritional aspects of this species, protein, lipid and carbohydrate were measured. The value of protein, lipid and carbohydrate was 4.96%, 15.82% and 5.65%, respectively. The antioxidant activities of 80% methanolic extract were 46.7%, 23.7% and 23.8% on DPPH (1,1-Diphenyl-2-picrylydrazy) radical, superoxide anion radical and hydrogen peroxide scavenging, respectively. Percentage metal chelating activity was 81.2%. Enzymatic extracts of Alcalase and Ultraflow showed remarkable scavenging activities on DPPH radical (86.5% and 57.2%, respectively), and superoxide anion scavenging activities were 45.3% and 41.4% from Kojizyme and Viscozyme extracts, respectively. Extract of Protomex revealed 24.8% activity on hydrogen peroxide and Neutase showed 30.8% on hydroxyl radical scavenging effects. Celluclast and Viscozyme extracts showed 33.2% and 32.1% activities on nitric oxide scavenging, respectively, while Alcalase showed 61.5% on metal chelating. This species contains higher lipids among the biochemical compounds and higher metal chelating activities from both 80% methanolic and enzymatic extracts.

Properties of Porphyran and Hemicellulose extracted with Different extract Solutions and Enzymatic Pretreatments from Porphyra (추출 용매 및 효소 전처리 방법에 따른 포피란과 헤미셀루로오즈의 특성)

  • AN, Se-Ra;KOO, Jae-Geun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.108-117
    • /
    • 2017
  • Laver, Porphyra, is distinctive for its high content of proteins and polysaccharides such as porphyran and hemicellulose. The chemical properties of the polysaccharides extracted with different extraction methods such as hot water, dilute acid(pH 4.0) or alkali solution(2N NaOH) were examined to investigate the suitable extraction conditions for porphyran and hemicellulose from laver. For porphyran extraction, dilute acid solution was more preferable to hot water and alkali solution because of its higher 3,6-anhydrogalactose content and lower protein content. However, alkali solution was more suitable to extract the hemicellulose because of higher mannose content indicating the extraction of mannan. To decrease contamination of the polysaccharides with protein, the dried lavers were pretreated with enzymes (Protamex, Flavourzyme, Alcalase, Viscozyme) before hot water extraction. All enzyme pretreatments increased the yield of polysaccharides by compared with control (enzyme unpretreated) and Flavourzyme pretreatment was most effective to decrease protein contamination in the polysaccharide. All viscosities of porphyran solutions pretreated by enzymes were lower compared to the control porphyran solution and showed pseudoplastic behavior with yield stress. In case of alkali extraction of residues obtained after enzyme hydrolysis and hot water extraction, protease pretreatment increased the mannose contents in the polysaccharide while the xylose content was increased by Viscozyme pretreatment.

Development and Research into Functional Foods from Hydrolyzed Whey Protein Powder with Sialic Acid as Its Index Component - III. Bacterial Reverse Mutation Testing of Hydrolyzed Whey Protein Powder Containing Normal Concentration of Sialic Acid (7%) with Enzyme Separation Method - (Sialic Acid를 지표성분으로 하는 유청가수분해단백분말의 기능성식품 개발연구 - III. 효소분리로 7% Siailc Acid가 표준적으로 함유된 유청가수분해단백분말의 미생물복귀돌연변이시험 연구 -)

  • Kim, Hee-Kyong;Noh, Hye-Ji;Cho, Hyang-Hyun;Koh, Hong Bum
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • The ultimate research goal of the current study was a development of hydrolyzed whey protein powder (7%-GNANA) manufactured with normal content of sialic acid, a marker compound, that is naturally occurring at 7% concentration in GMP obtained from the milk protein. GMP is a safe food, used worldwide in infant and baby foods, etc. The test substance was prepared using (7% sialic acid containing) GMP as a raw material, and then using alcalase, an enzyme approved as a food additive, after separation of sialic acid with 100% efficiency and 7%-GNANA (containing 7% sialic acid and protein; product name: HELICOBACTROL-7) provided by MEDINUTROL Inc. (Korea). Bacterial reverse mutation (Ames) test was conducted in accordance with GLP Guideline using the test substance specified above. To identify its mutagenic potential against microorganisms, histidine auxotrophic strains of Salmonella Typhimurium, TA98, TA100, TA1535, and TA1537, and tryptophan auxotrophic strain of Escherichia coli, WP2uvrA, were used. The bacterial reverse mutation (Ames) test was performed by dividing the test substances into five different concentration groups (0, 61.7, 185, 556, 1,670, $5,000{\mu}g/plate$). Results of this experiment did not reveal repetitive increase of colony generating values or positive criteria for reverse mutagenicity for any concentration of test substances in any of the five strains, regardless of the presence of a metabolic activation system, and no dose-dependency was identified. In conclusion, the safety of 7%-GNANA test substance was verified by bacterial reverse mutation test conducted before registration of 7%-GNANA as a food additive.

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 1. Fish Sauce from Mackerel Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 1. 고등어 폐기물을 이용한 어장유의 속성제조 및 품질)

  • HAN Bong-Ho;BAE Tae-Jin;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.109-124
    • /
    • 1990
  • A rapid processing method for fish sauce of high quality stability and favorable flavor was investigated using mackerel waste as starting material. The chopped waste was homogenized with water and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid, Pacific Chem. Co.) and Alcalase ($1.94\cdot10^4$ U/g solid, Novo) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal pH and temperature for the hydrolysis with Complex enzyme-2000 were 8.0 and $50^{\circ}C$, and those with Alcalase were 9.0 and $55^{\circ}C$. In both cases, the reasonabe amount of added water and enzyme concentration based on the waste weight were $40\%,\;3\%$ and hydrolyzing time was 100 min. Thermal treatment of the hydrolysate with $6\%$ of invert sugar for 2 hours at $90^{\circ}C$ was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with $6\%$ of invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen of the raw waste was $93.7\~94.9\%$, and $87.6\~87.9\%$ of the total nitrogen in the fish sauce was in the from of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.0\~14.5\%$ and less than $10mg\%$, respectively. The fish sauce was stable on bacterial growth during the storage of 60 days at $26\pm3^{\circ}C$ and the quality was also maintained.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 2. Fish Sauce from Sardine Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 2. 정어리 폐기물을 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.125-136
    • /
    • 1990
  • To develope a rapid processing method for fish sauce, processing conditions of fish sauce from sardine waste was investigated. The chopped waste was homogenized and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid) and Alcalase($1.94\cdot10^4$ U/g solid) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal temperature for the case of hydrolysis with Complex enzyme-2000 was 50 and that with Alcalase was $55^{\circ}C$. In both cases, the reasonable pH, amount of water for homo-genization, enzyme concentration and hydrolyzing time were 8.0, $40\%$ (W/W), $3\%$ and 100 min, respectively. Heating of the filtrated hydrolysate for 2 hours at $90^{\circ}C$ with $6\%$ of invert sugar was suitable for pasteurization of the hydrolysate and inactivation of enzymes. Flavor, taste and color of the hydrolysate was improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen in the raw sardine waste was $91.2\~92.3\%$ and $87.2\~87.8\%$ of the total nitrogen in the fish sauce was in the form of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.2\~14.4\%$ and less than $10mg\%$, respectively. The fish sauce was stable during the storage of 60 days at $26\pm3^{\circ}C$ on bacterial growth and its quality was also maintained.

  • PDF

Process Optimization of Peptides Production from Protein of Crab (Ovalipes punctatus) and Its Antioxidant Capacity Analysis (꽃게(Ovalipes punctatus) 단백질 유래 항산화 기능성 펩타이드 제조 최적공정 확립 및 이화학적 특성)

  • Ha, Yoo Jin;Kim, Do Hyun;Lee, Byung Hee;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.367-377
    • /
    • 2018
  • Swimming crab(Ovalipes punctatus) is produced in Korea and utilized as semi-processed food at streamed cooked state. Recently, protein hydrolysates have been known as having function such as antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity. This research was investigated to find the functional antioxidant from crab hydrolysates. To fine optimal protease enzyme, alcalase, bromelain, flavourzyme, neutrase, papain, and protamex were selected to evaluate the DPPH radical scavenging activity and finally bromelain to show the best activity was selected. The molecular weight of bromelain hydrolysates were distributed with range from 500 to 3,200 Da and 7 different molecules or more. The amino acids related to antioxidant capacity was about 42.54%. The processes optimization study used was the response surface methodology. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 1 to 3%(w/v). As a result, the optimization of process was determined at temperature of $55^{\circ}C$, pH of 6.5, and enzyme concentration of 3%(w/v). In these conditions, degree of hydrolysates were maximum 71.60%. Therefore, we expect that those products are useful as functional food ingredients.

Derivatization of Rice Wine Meal Using Commercial Proteases and Characterization of Its Hydrolysates (단백질가수분해효소를 이용한 탁주박의 가수분해 및 그 분해물의 특성)

  • Kim, Chang-Won;Choi, Hyuk-Joon;Han, Bok-Kyung;Yoo, Seung-Seok;Kim, Chang-Nam;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.729-734
    • /
    • 2011
  • With the goal of transforming rice protein from an insoluble to a soluble form to increase the industrial utilization of rice wine meal (RWM), RWM was derivatized using commercial proteases and the RWM hydrolysates were characterized. Eight commercial proteases were used individually or in combination for hydrolysis of RWM. The degree of hydrolysis was assessed by determining the soluble protein in supernatant using the Lowry assay, protein in precipitates using a semimicro Kjeldahl procedure, and gravimetrically by the weight difference before and after hydrolysis. Protamex, Alcalase and Protease N proteases were most effective for hydrolysis of RWM. Although these assessment methodologies displayed some variation, they generally showed a similar pattern. When the aforementioned three proteases were simultaneously used to treat RWM, no significant difference was observed between the three assays (p<0.05) indicating an absence of enzymatic synergy.

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hrdrolysis and Improvement of Product Quality 3. Fish Sauce from Whole Sardine and Its Quality. (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 3. 정어리 전어체를 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Byeong-Sam;LEE Hyun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.5
    • /
    • pp.361-372
    • /
    • 1990
  • Processing conditions of whole sardine into modified fish sauce were investigated. Thawed and chopped sardine was homogenized and hydrolyzed using commercial proteolytic enzymes such as complex enzyme-2000($2.18{\cdot}10^4U/g solid$) and alcalase($1.94{\cdot}10^4\;U/g solid$) in a cylindrical vessel with 4 baffles and 6-bladed impeller. Optimal pH, enzyme concentration and temperature for the hydrolysis with complex enzyme-2000 were 7.0, $7\%$ (W/W) and $52^{\circ}C$, and-those with alcalase were 8.0, $6\%$ (W/W) and $60^{\circ}C$. In both cases, the reasonable amount of water for homogenization, agitation speed and hydrolyzing time were $100\%$ (W/W), 100 rpm and 210 minutes. Thermal treatment of the filtered hydrolysate at $90^{\circ}C$ for 2 hours with $6\%$ of invert sugar was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the heating process in which the browning products might participate. The content of free amino nitrogen in the fish sauce seasoned with $15\%$ of table salt was ca. $1,640 mg\%$. Yield of the fish sauce based on the contents of proteinous and free amino nitrogen in the raw whole sardine was ca. $86\%$, and ca. $96\%$ of these compounds of the fish sauce was in the form of free amino nitrogen. The pH, salinity and histamine content of the fish sauce were $6.1\~6.3,\;14.2\~14.3\%$ and less than $10\;mg\%$.

  • PDF

Development of Liquefied Seasoning Material from Cockle Shell By-Product (새조개 가공부산물을 이용한 액상 조미료 소재 개발)

  • 배태진;강훈이
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.521-527
    • /
    • 1997
  • A liquefied seasoning material was manufactured by using the enzymatic hydrolysis for the benefit of highly effective utilization of cockle shell by-product, and their quality was investigated. The weight ratio of by-product to whole cockle shell was 32.7%, and the contents of moisture and crude protein in the raw cockle shell by-product were 83.1% and 10.7%, respectively. The optimal concentrations of protease such as Protease N. P.(Pacific Chemical Co.) and Alcalase(Noo co), used in order to reduced the hydrolysis period, were effective at 4%(w/w), and optimal hydrolyzing time was 8 hours and after 8 hours were little changed. To improve flavor of the liquefied seasoning material, by Maillard reaction used thermal treatment, addition of glucose was very effective. And addition in hydrolysate with 10% glucose, 9% table salt, 2% starch and 0.5% caramel were suitable for promotion of taste. Total nitrogen and amino type nitrogen in the product were 1,607mg% and 1,264mg%, respectively. And the ratio of amino type nitrogen to the total nitrogen was 78.6%. The major free amino acid were glutamic acid, lysine, leucine, valine and aspartic acid, and content of glutamic acid was 1,027.5mg%.

  • PDF

Preparation and Characteristics of Functional Sauce from Shrimp Byproducts (새우 부산물을 이용한 기능성 소스의 제조)

  • Heu, Min-Soo;Kang, Kyung-Tae;Kim, Hye-Suk;Yeum, Dong-Min;Lee, Tae-Gee;Park, Tae-Bong;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.209-215
    • /
    • 2007
  • The functional sauce from shrimp byproducts (heads, shells and tails) was prepared and examined for its characterization. The results of volatile basic nitrogen (VBN) suggested that shrimp byproducts were suitable materials for preparing functional sauce. The shrimp hydrolysate, which was incubated with Alcalase for 30 min, showed excellent yield and ACE inhibitory activity. The concentrated sauce from shrimp byproduct was high in crude protein, while low in VBN content and salinity when compared to commercial shrimp sauce. The total amino acid content (23,095.2 mg/100 mL) of concentrated sauce from shrimp byproduct was higher than that (4,582.5 mg/100 smL) of commercial shrimp sauce; also, the major amino acids were glutamic acid, aspartic acid, arginine and lysine. The free amino acid content and taste value of concentrated sauce from shrimp byproduct were 2,705.5 mg/100 mL and 81.0, respectively. The results on the taste value of concentrated sauce from shrimp byproducts suggested that the major taste active compounds among free amino acids were glutamic acid and aspartic acid.