• Title/Summary/Keyword: alarm

Search Result 1,687, Processing Time 0.028 seconds

Computer Vision-Based Car Accident Detection using YOLOv8 (YOLO v8을 활용한 컴퓨터 비전 기반 교통사고 탐지)

  • Marwa Chacha Andrea;Choong Kwon Lee;Yang Sok Kim;Mi Jin Noh;Sang Il Moon;Jae Ho Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Car accidents occur as a result of collisions between vehicles, leading to both vehicle damage and personal and material losses. This study developed a vehicle accident detection model based on 2,550 image frames extracted from car accident videos uploaded to YouTube, captured by CCTV. To preprocess the data, bounding boxes were annotated using roboflow.com, and the dataset was augmented by flipping images at various angles. The You Only Look Once version 8 (YOLOv8) model was employed for training, achieving an average accuracy of 0.954 in accident detection. The proposed model holds practical significance by facilitating prompt alarm transmission in emergency situations. Furthermore, it contributes to the research on developing an effective and efficient mechanism for vehicle accident detection, which can be utilized on devices like smartphones. Future research aims to refine the detection capabilities by integrating additional data including sound.

Road Environment Black Ice Detection Limits Using a Single LIDAR Sensor (단일 라이다 센서를 이용한 도로환경 블랙아이스 검출 한계)

  • Sung-Tae Kim;Won-Hyuck Choi;Je-Hong Park;Seok-Min Hong;Yeong-Geun Lim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.865-870
    • /
    • 2023
  • Recently, accidents caused by black ice, a road freezing phenomenon caused by natural power, are increasing. Black ice is difficult to identify directly with the human eye and is more likely to misunderstand it as standing water, so there is a high accident rate caused by car sliding. To solve this problem, this paper presents a method of detecting black ice centered on LiDAR sensors. With a small, inexpensive, and high-accuracy light detection and ranging (LiDAR) sensor, the temperature and inclination angle are set differently to detect black ice and asphalt by setting different reflection angles of asphalt and black ice differently in temperatures and inclinations. The LIDARO carried out in the study points out that additional research and improvement are needed to increase accuracy, and through this, more reliable black ice detection methods can be suggested. This method suggests a method of detecting black ice through early system design research by preventing accidents caused by black ice in advance.

Autoencoder Based Fire Detection Model Using Multi-Sensor Data (다중 센서 데이터를 활용한 오토인코더 기반 화재감지 모델)

  • Taeseong Kim;Hyo-Rin Choi;Young-Seon Jeong
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.23-32
    • /
    • 2024
  • Large-scale fires and their consequential damages are becoming increasingly common, but confidence in fire detection systems is waning. Recently, widely-used chemical fire detectors frequently generate lots of false alarms, while video-based deep learning fire detection is hampered by its time-consuming and expensive nature. To tackle these issues, this study proposes a fire detection model utilizing an autoencoder approach. The objective is to minimize false alarms while achieving swift and precise fire detection. The proposed model, employing an autoencoder methodology, can exclusively learn from normal data without the need for fire-related data, thus enhancing its adaptability to diverse environments. By amalgamating data from five distinct sensors, it facilitates rapid and accurate fire detection. Through experiments with various hyperparameter combinations, the proposed model demonstrated that out of 14 scenarios, only one encountered false alarm issues. Experimental results underscore its potential to curtail fire-related losses and bolster the reliability of fire detection systems.

Unexpected Restart Failure of Durable Left Ventricular Assist Devices: A Report of Two Cases

  • Hyo Won Seo;Ga Hee Jeong;Sung Min Kim;Minjung Bak;Darae Kim;Jin-Oh Choi;Kiick Sung;Yang Hyun Cho
    • Journal of Chest Surgery
    • /
    • v.57 no.3
    • /
    • pp.315-318
    • /
    • 2024
  • The HeartWare Ventricular Assist Device (HVAD) was widely used for mechanical circulatory support in patients with end-stage heart failure. However, there have been reports of a critical issue with HVAD pumps failing to restart, or experiencing delays in restarting, after being stopped. This case report describes 2 instances of HVAD failure-to-restart during heart transplantation surgery and routine outpatient care. Despite multiple attempts to restart the pump using various controllers and extensions, the HVAD failed to restart, triggering a hazard alarm for pump stoppage. In one case, the patient survived after receiving a heart transplantation, while in the other, the patient died immediately following the controller exchange. These cases highlight the rare but life-threatening complication of HVAD failure-to-restart, underscoring the importance of awareness among clinicians, patients, and caregivers, and adherence to the manufacturer's guidelines and recommendations for HVAD management.

Protecting Accounting Information Systems using Machine Learning Based Intrusion Detection

  • Biswajit Panja
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2024
  • In general network-based intrusion detection system is designed to detect malicious behavior directed at a network or its resources. The key goal of this paper is to look at network data and identify whether it is normal traffic data or anomaly traffic data specifically for accounting information systems. In today's world, there are a variety of principles for detecting various forms of network-based intrusion. In this paper, we are using supervised machine learning techniques. Classification models are used to train and validate data. Using these algorithms we are training the system using a training dataset then we use this trained system to detect intrusion from the testing dataset. In our proposed method, we will detect whether the network data is normal or an anomaly. Using this method we can avoid unauthorized activity on the network and systems under that network. The Decision Tree and K-Nearest Neighbor are applied to the proposed model to classify abnormal to normal behaviors of network traffic data. In addition to that, Logistic Regression Classifier and Support Vector Classification algorithms are used in our model to support proposed concepts. Furthermore, a feature selection method is used to collect valuable information from the dataset to enhance the efficiency of the proposed approach. Random Forest machine learning algorithm is used, which assists the system to identify crucial aspects and focus on them rather than all the features them. The experimental findings revealed that the suggested method for network intrusion detection has a neglected false alarm rate, with the accuracy of the result expected to be between 95% and 100%. As a result of the high precision rate, this concept can be used to detect network data intrusion and prevent vulnerabilities on the network.

Health Perceptions of Police Officers in Korea: An Investigative Study

  • Dongmin Lee;Seohyun Park;Byeong Kwan Woo;Yeon-Cheol Park;Jion Kim
    • Journal of Acupuncture Research
    • /
    • v.41
    • /
    • pp.149-159
    • /
    • 2024
  • Background: Police officers are an occupational group with a high risk of developing musculoskeletal, cardiovascular, and mental diseases because of the nature of their work. This study aimed to gain an understanding of job-related health risks by comparing overall health awareness, presence of physical and mental disabilities and their causes, medical use patterns, and quality of life of the general public through a survey. Methods: In this comparative study, police officer data were collected through a survey conducted from October 1, 2022, to November 15, 2022, and general public data from the 8th National Health and Nutrition Examination Survey of Korea were used for comparison. Results: Police officers' health perception of physical or mental disabilities was significantly more negative than that of the general public because of their work characteristics, patterns, and functions. In addition, police officers with disabilities had severe work and daily living limitations, and their awareness of their overall quality of life was low enough to warrant alarm. Despite their high rates of seeking treatment in medical institutions, continuous medical use was limited. Conclusion: More research on major diseases to which police officers are at risk of exposure is necessary to analyze risk factors and accumulate related data to systematize health management. In addition, Korean medicine treatment techniques with excellent disease prevention are recommended for the health management of police officers.

Ensemble Based Optimal Feature Selection Algorithm for Efficient Intrusion Detection in Wireless Sensor Network

  • Shyam Sundar S;R.S. Bhuvaneswaran;SaiRamesh L
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2214-2229
    • /
    • 2024
  • Wireless sensor network (WSN) consists of large number of sensor nodes that are deployed in geographical locations to collect sensed information, process data and communicate it to the control station for further processing. Due the unfriendly environment where the sensors are deployed, there exist many possibilities of malicious nodes which performs malicious activities in the network. Therefore, the security threats affect performance and life time of sensor networks, whereas various security aspects are there to address security issues in WSN namely Cryptography, Trust Management, Intrusion Detection System (IDS) and Intrusion Prevention Systems (IPS). However, IDS detect the malicious activities and produce an alarm. These malicious activities exploit vulnerabilities in the network layer and affect all layers in the network. Existing feature selection methods such as filter-based methods are not considering the redundancy of the selected features and wrapper method has high risk of overfitting the classification of intrusion. Due to overfitting, the classification algorithm fails to detect the intrusion in better manner. The main objective of this paper is to provide the efficient feature selection algorithm which was suitable for any type classification algorithm to detect the intrusion in an effective manner. This paper, the security of the network is addressed by proposing Feature Selection Algorithm using Chi Squared with Ensemble Method (FSChE). The proposed scheme employs the combination of decision tree along with the random forest classification algorithm to form ensemble classifier. The experimental results justify the feasibility of the proposed scheme in terms of attack detection, packet delivery ratio and time analysis by employing NSL KDD cup data Set. The obtained results shows that the proposed ensemble method increases the overall performance by 10% to 25% with respect to mentioned parameters.

Empirical Forecast of Corotating Interacting Regions and Geomagnetic Storms Based on Coronal Hole Information (코로나 홀을 이용한 CIR과 지자기 폭풍의 경험적 예보 연구)

  • Lee, Ji-Hye;Moon, Yong-Jae;Choi, Yun-Hee;Yoo, Kye-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2009
  • In this study, we suggest an empirical forecast of CIR (Corotating Interaction Regions) and geomagnetic storm based on the information of coronal holes (CH). For this we used CH data obtained from He I $10830{\AA}$ maps at National Solar Observatory-Kitt Peak from January 1996 to November 2003 and the CIR and storm data that Choi et al. (2009) identified. Considering the relationship among coronal holes, CIRs, and geomagnetic storms (Choi et al. 2009), we propose the criteria for geoeffective coronal holes; the center of CH is located between $N40^{\circ}$ and $S40^{\circ}$ and between $E40^{\circ}$ and $W20^{\circ}$, and its area in percentage of solar hemispheric area is larger than the following areas: (1) case 1: 0.36%, (2) case 2: 0.66%, (3) case 3: 0.36% for 1996-2000, and 0.66% for 2001-2003. Then we present contingency tables between prediction and observation for three cases and their dependence on solar cycle phase. From the contingency tables, we determined several statistical parameters for forecast evaluation such as PODy (the probability of detection yes), FAR (the false alarm ratio), Bias (the ratio of "yes" predictions to "yes" observations) and CSI (critical success index). Considering the importance of PODy and CSI, we found that the best criterion is case 3; CH-CIR: PODy=0.77, FAR=0.66, Bias=2.28, CSI=0.30. CH-storm: PODy=0.81, FAR=0.84, Bias=5.00, CSI=0.16. It is also found that the parameters after the solar maximum are much better than those before the solar maximum. Our results show that the forecasting of CIR based on coronal hole information is meaningful but the forecast of goemagnetic storm is challenging.

An Implementation Method of the Character Recognizer for the Sorting Rate Improvement of an Automatic Postal Envelope Sorting Machine (우편물 자동구분기의 구분율 향상을 위한 문자인식기의 구현 방법)

  • Lim, Kil-Taek;Jeong, Seon-Hwa;Jang, Seung-Ick;Kim, Ho-Yon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • The recognition of postal address images is indispensable for the automatic sorting of postal envelopes. The process of the address image recognition is composed of three steps-address image preprocessing, character recognition, address interpretation. The extracted character images from the preprocessing step are forwarded to the character recognition step, in which multiple candidate characters with reliability scores are obtained for each character image extracted. aracters with reliability scores are obtained for each character image extracted. Utilizing those character candidates with scores, we obtain the final valid address for the input envelope image through the address interpretation step. The envelope sorting rate depends on the performance of all three steps, among which character recognition step could be said to be very important. The good character recognizer would be the one which could produce valid candidates with very reliable scores to help the address interpretation step go easy. In this paper, we propose the method of generating character candidates with reliable recognition scores. We utilize the existing MLP(multilayered perceptrons) neural network of the address recognition system in the current automatic postal envelope sorters, as the classifier for the each image from the preprocessing step. The MLP is well known to be one of the best classifiers in terms of processing speed and recognition rate. The false alarm problem, however, might be occurred in recognition results, which made the address interpretation hard. To make address interpretation easy and improve the envelope sorting rate, we propose promising methods to reestimate the recognition score (confidence) of the existing MLP classifier: the generation method of the statistical recognition properties of the classifier and the method of the combination of the MLP and the subspace classifier which roles as a reestimator of the confidence. To confirm the superiority of the proposed method, we have used the character images of the real postal envelopes from the sorters in the post office. The experimental results show that the proposed method produces high reliability in terms of error and rejection for individual characters and non-characters.

  • PDF

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.