• 제목/요약/키워드: aircraft tracking

검색결과 108건 처리시간 0.027초

Low-Earth orbit satellite constellation for ADS-B based in-flight aircraft tracking

  • Nguyen, Thien H.;Tsafnat, Naomi;Cetin, Ediz;Osborne, Barnaby;Dixon, Thomas F.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.95-108
    • /
    • 2015
  • Automatic Dependent Surveillance Broadcast (ADS-B) is quickly being adopted by aviation safety authorities around the world as the standard for aircraft tracking. The technology provides the opportunity for live tracking of aircraft positions within range of an ADS-B receiver stations. Currently these receiver stations are bound by land and local infrastructural constraints. As such there is little to no coverage over oceans and poles, over which many commercial flights routinely travel. A low cost space based ADS-B receiving system is proposed as a constellation of small satellites. The possibility for a link between aircraft and satellite is dependent primarily on proximity. Calculating the likelihood of a link between two moving targets when considering with the non-periodic and non-uniform nature of actual aircraft flight-paths is non-trivial. This analysis of the link likelihood and the performance of the tracking ability of the satellite constellation has been carried out by a direct simulation of satellites and aircraft. Parameters defining the constellation (satellite numbers, orbit size and shape, orbit configuration) were varied between reasonable limits. The recent MH370 disappearance was simulated and potential tracking and coverage was analysed using an example constellation. The trend of more satellites at a higher altitude inclined at 60 degrees was found to be the optimal solution.

기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구 (Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking)

  • 민병문;노태수
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계 (Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method)

  • 최현진;유창선;유혁;김성욱;안석민
    • 한국항공운항학회지
    • /
    • 제25권4호
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

Robust Tracker Design Method Based on Multi-Trajectories of Aircraft

  • Kim, Eung-Tai;Andrisani, D. II
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.39-49
    • /
    • 2002
  • This paper presents a robust tracker design method that is specific to the trajectories of target aircraft. This method assumes that representative trajectories of the target aircraft are available. The exact trajectories known to the tracker enables the incorporation of the exact data in the tracker design instead of the measurement data. An estimator is designed to have acceptable performance in tracking a finite number of different target trajectories with a capability to trade off the mean and maximum errors between the exact trajectories and the estimated or predicted trajectories. Constant estimator gains that minimize the cost functions related to the estimation or prediction error are computed off-line from an iterative algorithm. This tracker design method is applied to the longitudinal motion tracking of target aircraft.

조종사 필터에 의한 T-50 정밀추적 성능 향상 (Performance Improvement of T-50 Fine Tracking Using Pilot Prefilter)

  • 김종섭;배명환;황병문;고기옥;강철;성덕용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.625-630
    • /
    • 2004
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The laws of flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements. Particularly, the design of longitudinal control laws for utilizing RSS methods greatly affects the performance of the aircraft in Air-to-Air Tracking and Air-to-Ground modes, which improves weapon delivery. In the area of Airto- Air Tracking, the development of longitudinal control laws aids in the fine tracking and gross acquisition of other aircraft. This paper proposes that Air-to-Air fine tracking can be improved via RSS control law design methods without effecting Air-to-Air gross acquisition.

  • PDF

지상 목표물 추적을 위한 다수 무인항공기의 협력제어 (Cooperative Control of Multiple Unmanned Aircraft for Standoff Tracking of a Moving Target)

  • 윤승호;김유단
    • 한국항공우주학회지
    • /
    • 제39권2호
    • /
    • pp.114-120
    • /
    • 2011
  • 본 논문에서는 다수의 무인항공기가 저속으로 이동하는 지상 목표물을 추적하기 위한 협력제어 기법을 제안한다. 유도명령을 생성하기 위하여 르야프노프 안정성 이론을 이용한 벡터필드를 설계한다. 목표물과 일정한 거리를 유지하며 선회하기 위한 롤각 명령을 생성한다. 이와 동시에 목표물에 대한 항공기의 위상각을 조절하기 위한 속도 명령과 기수각 명령을 생성하고, 항공기 간 충돌방지를 고려한 기법을 제시한다. 다수의 무인항공기를 이용한 수치 시뮬레이션을 수행하여 제안된 제어기법의 성능을 검증하였다.

이동 물체 추적을 위한 전 처리 (Preprocessing for Tracking of Moving Object)

  • 홍승범;백중환
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 2003
  • This paper proposes a preprocessing method for tracking aircraft's take-off and lading. The method uses accumulative difference image technique for segmenting the object from the background, and obtains the centroid of the object exactly using centroid method. Then the moving object is analyzed and represented with the information such as feature point, velocity, and distance. A simulation result reveals that the proposed algorithm has good performance in segmenting and tracking the aircraft.

  • PDF

기능분석을 이용한 항공기 설계요구의 할당 및 추적에 관한 연구 (A Study on the Requirements Allocation and Tracking by Implementing Functional Analysis)

  • 이재우
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.52-60
    • /
    • 1999
  • By implementing the Systems Engineering process for the aircraft preliminary design, functional analysis study is performed, hence Functional Interface Data Flow(FIDF) and Functional Flow Block Diagram(FFBD) are generated. Based on FIDF and FFBD, allocable and non-allocable design/performance/RM&S requirements are allocated to the appropriate levels. Weight and cost tracking and design margin management methodologies are studied and implemented for the balanced aircraft design.

  • PDF

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

고출력 위협신호 모의장치 개발 및 추적레이다 연동 (Development of High power Threat Signal Simulator and Interfacing Tracking Radar)

  • 곽용길
    • 한국항행학회논문지
    • /
    • 제26권2호
    • /
    • pp.85-90
    • /
    • 2022
  • 본 연구에서는 항공기 체계의 성능을 시험하기 위해 시험 대상 항공기에 실제 위협과 유사한 신호를 고출력으로 송신할 수 있는 위협신호 모의 장치를 설계하였다. 고출력 위협신호 모의장치는 광대역(UHF대역, L대역, S대역, X 대역)의 통신신호, 레이다 신호를 송신하는 것이 가능해야 하며, 추적 레이다와 연동을 통해 항공기에 정확하게 지향하여 신호를 송신하는 제어시스템이 필요하다. 개발된 장비의 신호의 세기는 신호의 종류에 따라서 63 dBm, 93 dBm이상이며, 추적 정밀도는 0.1°이하로 요구되는 전기적/기계적 성능을 모두 만족함을 확인하였고, 추적 레이다 연동을 통해 고출력 위협신호 모의장치의 안테나가 항공기 위치로 신호를 정확하게 지향할 수 있음을 확인하였다.