• 제목/요약/키워드: aircraft modelling

검색결과 43건 처리시간 0.024초

얇은 벽 보를 이용한 초기 받음각이 있는 테이퍼형 복합재료 항공기 날개의 구조 모델링 (Structural Modelling of Tapered Composite Aircraft Wings with Initial Angle of Attack using Thin-Walled Beam)

  • 김근택;송오섭
    • 항공우주시스템공학회지
    • /
    • 제3권2호
    • /
    • pp.1-11
    • /
    • 2009
  • A structural modelling for study on dynamic characteristics of tapered composite aircraft wings in the form of thin-walled beam is presented. The proposed structural model includes effects of transverse shear flexibility exhibited by the advanced composite materials and warping restraint characterizing elastic anisotropy and induced structural couplings. The complex effects of these factors could have a role in more efficient analysis on those structural models.

  • PDF

군용항공기의 운항 경로 변경에 따른 소음영향 및 저감 평가 (Evaluation on the Noise Influence and Reduction due to the Change of Military Aircraft Flight Path)

  • 이진영;이찬;길현권
    • 환경영향평가
    • /
    • 제18권3호
    • /
    • pp.143-150
    • /
    • 2009
  • The present study investigates the effects of the flight paths of military aircraft on noise map and its WECPNL(Weighted Equivalent Continuous Perceived Noise Level) distribution. Aircraft noise modeling and simulation have been performed on a Korean military air base by means of INM(Integrated Noise Model) with the input data of airfield location, aircraft specifications, flight paths and aircraft's operation schedules. The result of noise modelling has been verified in comparison with the result of measured noise level. The flight path of military aircraft, as the key parameter of the present study, was modeled by combining takeoff, overfly, approach and touch-and-go modes. The present INM simulations have been conducted for various flight path cases with different takeoff, approach modes and overfly modes. The simulation results showed that the change of flight path can remarkably affect the noise influence region and the WECPNL distribution around the airfield.

틸트로터 항공기 비선형 시뮬레이션 프로그램 개발 (Development of Simulation Program for Tilt Rotor Aircraft)

  • 유창선;최형식;박범진;안성준;강영신
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.

회전익 항공기용 가변형 전술용 시뮬레이터의 음향 재생 시스템 제작 (Implementation of the Aural Cueing System of the Reconfigurable Tactical SFTS for the Rotor Aircraft)

  • 홍승범;최연철
    • 한국항공운항학회지
    • /
    • 제17권4호
    • /
    • pp.48-54
    • /
    • 2009
  • We implemented the Aural Cueing System(ACS) system of the reconfigurable tactical trainer(RTT) for th rotor aircraft. RTT provides a collective training system to meet aviation training requirements and supports organizational training for aviations units in combined arms collective training and mission rehearsal. ACS handles the volume, pitch and repetition of the digitally stored sounds based on commands it receives from an UDP/IP. In this paper, we explained and implemented the conceptual and detail design the ACS system for the rotor aircraft such as AH-1H(Iroquios), UH-60(Blackhwak), AH-1(Cobra) etc. The conceptual design composed of the sound cueing data analysis, sound modelling which is inner, outer, weapon and warn environment of rotor aircraft, sound synthesis and replay.

  • PDF

Quasi Steady Stall Modelling of Aircraft Using Least-Square Method

  • Verma, Hari Om;Peyada, N.K.
    • International Journal of Aerospace System Engineering
    • /
    • 제7권1호
    • /
    • pp.21-27
    • /
    • 2020
  • Quasi steady stall is a phenomenon to characterize the aerodynamic behavior of aircraft at high angle of attack region. Generally, it is exercised from a steady state level flight to stall and its recovery to the initial flight in a calm weather. For a theoretical study, such maneuver is demonstrated in the form of aerodynamic model which consists of aircraft's stability and control derivatives. The current research paper is focused on the appropriate selection of aerodynamic model for the maneuver and estimation of the unknown model coefficients using least-square method. The statistical accuracy of the estimated parameters is presented in terms of standard deviations. Finally, the validation has been presented by comparing the measured data to the simulated data from different models.

Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets

  • Hlavicka-Laczak, Lili E.;Kollar, Laszlo P.;Karolyi, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.31-39
    • /
    • 2021
  • To investigate numerically the effect of all parameters on the outcome of an aircraft impact into robust engineering structures like nuclear power plant containments is a tedious task. In order to reduce the problem to a manageable size, we propose a single dimensionless parameter, the damage potential, to characterize the main features of the impact. The damage potential, which is the ratio of the initial kinetic energy of the aircraft to the work required to crush it, enables us to find the crucial parameter settings that need to be modelled numerically in detail. We show in this paper that the damage potential is indeed the most important parameter of the impact that determines the time-dependent reaction force when either finite element (FE) modelling or the Riera model is applied. We find that parameters that do not alter the damage potential, like elasticity of the target, are of secondary importance and if parameters are altered in a way that the damage potential remains the same then the course of the impact remains similar. We show, however, that the maximum value of the reaction force can be higher in case of elastic targets than in case of rigid targets due to the vibration of the target. The difference between the Riera and FE model results is also found to depend on the damage potential.

민(MIN) 설계 방법을 이용한 무인기 수평이동제어 알고리즘에 관한 연구 (Algorithm of Flying Control System for Level Flight using Min-Design Method on UAV)

  • 왕현민;허경무;우광준
    • 전자공학회논문지SC
    • /
    • 제46권3호
    • /
    • pp.59-65
    • /
    • 2009
  • 최근 무인기의 형태는 다양한 형태로 개발되고 있으며, 탑재 장비의 고성능 소형화를 바탕으로 무인기는 소형화되고 있다. 이러한 소형화되고 일반적인 형태가 아닌 무인기 개발에 있어, 기존의 개발방법으로는 이러한 비선형적인 요소로 인하여 정확한 모델링 및 제어기 알고리즘의 정형화하기가 어렵다. 따라서 본 논문에서는 기존이 비행체 개발 방법이 아닌, 하중 제어 개념을 적용한 Min 설계 방법의 첫 번째 단계로, 원통형 무인기에 적용하여, 수평 비행 조건과 특성 그리고 제어기 설계 알고리즘을 찾아보았다. 이러한 Min 설계 방법은 고성능 컴퓨터를 사용한 무인기 개발에 있어 실시간 시뮬레이션을 통한 비용절감과 개발기간을 단축시킬 수 있다.

Aeroelastic tailoring using crenellated skins-modelling and experiment

  • Francois, Guillaume;Cooper, Jonathan E.;Weaver, Paul M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권2호
    • /
    • pp.93-124
    • /
    • 2017
  • Aeroelastic performance controls wing shape in flight and its behaviour under manoeuvre and gust loads. Controlling the wing‟s aeroelastic performance can therefore offer weight and fuel savings. In this paper, the rib orientation and the crenellated skin concept are used to control wing deformation under aerodynamic load. The impact of varying the rib/crenellation orientation, the crenellation width and thickness on the tip twist, tip displacement, natural frequencies, flutter speed and gust response are investigated. Various wind-off and wind-on loads are considered through Finite Element modelling and experiments, using wings manufactured through polyamide laser sintering. It is shown that it is possible to influence the aeroelastic behaviour using the rib and crenellation orientation, e.g., flutter speed increased by up to 14.2% and gust loads alleviated by up to 6.4%. A reasonable comparison between numerical and experimental results was found.

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.

Physics-based modelling for a closed form solution for flow angle estimation

  • Lerro, Angelo
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.273-287
    • /
    • 2021
  • Model-based, data-driven and physics-based approaches represent the state-of-the-art techniques to estimate the aircraft flow angles, angle-of-attack and angle-of-sideslip, in avionics. Thanks to sensor fusion techniques, a synthetic sensor is able to provide estimation of flow angles without any dedicated physical sensors. The work deals with a physics-based scheme derived from flight mechanic theory that leads to a nonlinear flow angle model. Even though several solvers can be adopted, nonlinear models can be replaced with less accurate but straightforward ones in practical applications. The present work proposes a linearisation to obtain the flow angles' closed form solution that is verified using a flight simulator. The main objective of the paper, in fact, is to analyse the estimation degradation using the proposed closed form solutions with respect to the nonlinear scheme. Moreover, flight conditions, where the proposed closed form solutions are not applicable, are identified.