• Title/Summary/Keyword: airborne exposure

Search Result 263, Processing Time 0.026 seconds

Occupational Exposure to Chemicals for Workers and Levels of Airborne Chemicals in Hairdressing Salon (미용실 작업자의 화학물질에 대한 직업적인 노출과 실내공기오염 수준)

  • Yun, Jung Soon;Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.375-384
    • /
    • 2006
  • Hairdressers may be exposed to many chemicals from hair dye, permanent, shampoo, hair spray and so on. The study was conducted to evaluate occupational exposure to 8 chemicals (isopropanol, ethanol, xylene, toluene, ethylbenzene, acetone, ammonia and formaldehyde) for workers and levels of these materials in airborne of a hairdressing salon. Since compared to ACGIH TLVs these 8 chemicals were very low, it is thought that there has no problem to occupational exposure to these chemicals. Even if hairdressing salon is not enforced on Korean Standards for Indoor Air Quality, level of TOVC was thought to be below the standards. At the aspect of indoor air quality formaldehyde needs to be controlled in the future. The results imply that emission of isopropanol, ethanol, acetone and ammonia are related with hairdressing job, but emission of xylene, toluene and ehtylbenzene is more related with traditional indoor air pollution than hairdressing job. Sources of formaldehyde is thought to be little related with hairdressing job. HVAC system was a little effective on general ventilation.

A Exposure Concentration and Composition of Organic Solvents by the type of workplace in Mixed Organic Solvents use Companies (혼합 유기용재 취급작업장의 공정별 유기용제 구성성분 및 노출농도)

  • 원정일;김기환;신창섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.75-87
    • /
    • 2000
  • This study was conducted to investigate the composition, detection rate, and exposure concentration of the airborne organic solvents from the working environmental measurements of total 4181 different type of workplace in 3280 workshops in which organic solvents are used. The results are as follows : 1. For all workplaces except washing, the detection rate of toluene and benzene were 80% and 20%, respectively. 2. The number of detection of aromatic hydrocarbon and ketone were ranged 1.41-2.39 and 0.62-0.90 per a sample in all workplaces except that showed 1.01 in washing. 3. The mean of detection frequency was $3.3{\pm}2.5$ in all workplaces and there was no significant difference among that of each workplaces. 4. The airborne concentrations of methyl methacrylate, ethyl alcohol, methyl alcohol, and ethyl ether were $43.5{\pm}47.0{\;}ppm,{\;}22.5{\pm}51.0{\;},{\;}19.8{\pm}57.6{\;}ppm,{\;}19.8{\pm}40.14{\;}ppm, respectively. And those of cellosolve, methyl cellosolve acetate, and N,N-dimethyl formamide were $4.1{\pm}4.5$ ppm, $4.0{\pm}18.5{\;}ppm$, and $5.6{\pm}7.7{\;}ppm$, respectively and exceeded the occupational exposure limits enforced by Ministry of Labor in Korea. As the above results, it is suggested that the components of organic solvents should be indentified to efficient management, of working environment and conducted the engineering control for the workplaces using the hazardous materials.

  • PDF

Respiratory symptoms of workers exposed to the fume containing manganese (망간이 함유된 흄에 노출되는 근로자의 호흡기증상)

  • Yu, Sun-Hee;Kim, Doo-Hie;Lim, Hyun-Sul;Kim, Ji-Yong;Choi, Byung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.4 s.59
    • /
    • pp.752-763
    • /
    • 1997
  • To evaluate the effect of manganese on the respiratory system, we investigated the respiratory symptoms of 63 male workers exposed to, fume containing manganese (Mn), iron (Fe) and silica (Si), and compared them with those of 66 male workers not exposed to the fume in a manganese alloy smelting factory. The prevalence ratios of the seven respiratory symptoms were not different between two groups. The presence of any respiratory symptom was not related with the age, duration of employment, smoking status of workers, and exposure to fume. In furnace workers, it was not related with the airborne Mn, Fe, and Si concentration in the total or respirable fume. Airborne Mn concentrations of all 4 furnaces in the respirable fume were below $1mg/m^3$. There were two suspicious cases of pneumoconiosis among furnace workers and one definite case(1/2) among casting workers who were not exposed to fume. The above results suggest that the exposure to the low airborne Mn concentration is not related with respiratory symptoms and pneumoconiosis. However, it is necessary to study the respiratory effects of Mn using the symptom questionnaire with consideration of the severity and persistence, of symptoms and the time interval from exposure.

  • PDF

Microbial Assessment in Metal-Working Fluids Handling Industry (금속가공유 취급 작업장의 생물학적 인자 노출평가)

  • Park, Hyunhee;Park, Dongjin;Park, Hae Dong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.300-309
    • /
    • 2014
  • Objectives: The objective of this study is to evaluate microbial exposure hazards in the metal-working fluids(MWF) handling industry. Methods: Air quality parameters(airborne bacteria, fungi, endotoxin and oil mist) and bulk MWF in storage tanks were evaluated at 54 points at nine sites in South Korea. Results: The geometric means(GM) of culturable airborne bacteria, fungi, endotoxin and oil mist concentration were $133CFU/m^3$(n=376, range $7{\sim}6,510CFU/m^3$), $159CFU/m^3$(n=381, range $7{\sim}8,469CFU/m^3$), $8.06EU/m^3$(n=103, range $0.34{\sim}280.4EU/m^3$) and $0.20mg/m^3$(n=104, range $0.01{\sim}2.87mg/m^3$), respectively. The ratio of indoor to outdoor concentration was 2.7 for bacteria, 6.1 for endotoxin, and 4.8 for oil mist. Even though average airborne bacteria concentration did not exceed recommended exposure limits($1,000CFU/m^3$), MWF in the storage tanks was highly contaminated with bacteria(arithmetic mean $2.1{\times}10^6CFU/ml$) and exceeded recommended bacteria limits($10^5CFU/ml$). Conclusions: It is necessary for MWF handling workplaces to conduct periodical biohazard inspection of MWF storage tanks. Additionally, further research may be necessary to establish biological occupational exposure limits.

Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

  • Kim, Jong-Ho;Kwak, Byoung-Kyu;Ha, Min-A;Cheong, Hae-Kwan;Yi, Jong-Heop
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.8.1-8.10
    • /
    • 2012
  • Objectives: The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods: We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the results with previous observation data. The concentrations were compared with the currently used air quality standards. Results: Evaporation was found to be 10- to 1,000-fold higher than the emissions produced from a surrounding industrial complex. The modeled concentrations for benzene failed to meet current labor environmental standards, and the concentration of benzene, toluene, orthometa- para-xylene were higher than the values specified by air quality standards and guideline values on the ocean. The concentrations of total VOCs were much higher than indoor environmental criteria for the entire Taean area for a few days. Conclusions: The extent of airborne exposure was clearly not the same as that for normal conditions.

Relationship between Workers′ Exposure to Airborne Chromium and Blood and Urine Chromium Levels in Plating Process (도금업체 근로자의 공기중 크롬 노출 농도와 요 및 혈중 크롬 농도간의 상관성)

  • 이지태;신용철
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • This study was performed to evaluate chromium in air and chromium concentrations in whole blood and urine of workers at chrome plating factories, and to determine the correlation between environmental and biological chromium levels. This study involved 29 workers as study group and 24 undergraduate students as control group. The geometric means(GM) of airborne hexavalent chromium and total chromium concentrations in the plating factories were 3.4 $\mu\textrm{g}$/㎥ and 10.8 $\mu\textrm{g}$/㎥, respectively. Hexavalent chromium levels in two of total 29 measurements exceeded the korean occupational exposure limit and the American Conference of Governmental Industrial Hygienists Threshold Limit Value(ACGIH-TLV) of 50$\mu\textrm{g}$/㎥. Only one sample for total chromium exceeded the Korea occupational exposure limits, the ACGIH-TLV, and the National Institute for Occupational Safety and Health Recommended Exposure Limits(NIOSH-REL) of 500 $\mu\textrm{g}$/㎥. The GM of chromium concentrations in blood and urine of workers exposed to chromium were 8.4 $\mu\textrm{g}$/L and 11.9 $\mu\textrm{g}$/L. The GM of chromium concentrations in blood and urine of workers exposed to chromium were 8.4 $\mu\textrm{g}$/L and 11.9 $\mu\textrm{g}$/L, respectively, whereas the chromium concentrations in blood and urine of the controls were 1.6 $\mu\textrm{g}$/L and 3.8 $\mu\textrm{g}$/L, respectively. There were statistically significant differences of blood and urine concentrations between study group and control group (p<0.01). The chromium concentrations in urine were most highly related to hexavalent chromium, concentration in air(r=0.642, p<0.01). Also, there was a relatively high correlation between the hexavalent chromium concentrations in air and chromium concentrations in whole blood(r=0.557, p<0.05). These results indicate that whole-blood chromium with urinary chromium could be an indicator of chromium body burden caused by exposure to chromic acid mist in plating operation.

  • PDF

Cases Series of Malignant Lymphohematopoietic Disorder in Korean Semiconductor Industry

  • Kim, Eun-A;Lee, Hye-Eun;Ryu, Hyung-Woo;Park, Seung-Hyun;Kang, Seong-Kyu
    • Safety and Health at Work
    • /
    • v.2 no.2
    • /
    • pp.122-134
    • /
    • 2011
  • Objectives: Seven cases of malignant lymphohematopoietic (LHP) disorder were claimed to have developed from occupational exposure at two plants of a semiconductor company from 2007 to 2010. This study evaluated the possibility of exposure to carcinogenic agents for the cases. Methods: Clinical courses were reviewed with assessing possible exposure to carcinogenic agents related to LHP cancers. Chemicals used at six major semiconductor companies in Korea were reviewed. Airborne monitoring for chemicals, including benzene, was conducted and the ionizing radiation dose was measured from 2008 to 2010. Results: The latency of seven cases (five leukemiae, a Non-Hodgkin's lymphoma, and an aplastic anemia) ranged from 16 months to 15 years and 5 months. Most chemical measurements were at levels of less than 10% of the Korean Occupational Exposure Limit value. No carcinogens related to LHP cancers were used or detected. Complete-shielded radiation-generating devices were used, but the ionizing radiation doses were 0.20-0.22 uSv/hr (background level: 0.21 ${\mu}Sv/hr$). Airborne benzene was detected at 0.31 ppb when the detection limit was lowered as low as possible. Ethylene oxide and formaldehyde were not found in the cases' processes, while these two were determined to be among the 263 chemicals in the list that was used at the six semiconductor companies at levels lower than 0.1%. Exposures occurring before 2002 could not be assessed because of the lack of information. Conclusion: Considering the possibility of exposure to carcinogenic agents, we could not find any convincing evidence for occupational exposure in all investigated cases. However, further study is needed because the semiconductor industry is a newly developing one.

A Survey on the Management of Chemical Substances and Airborne Concentration in Laundries Exposed to Organic Solvents (일부 세탁소의 유기용제 관리실태 및 공기중 노출농도에 관한 조사)

  • Roh, Young-Man;Kwon, Gi-Bum;Park, Seoung-Hyun;Jeong, Jee-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.70-77
    • /
    • 2001
  • This study was conducted to identify the current status of occupational safety and health by checklist and to evaluate the airborne exposure to chemicals and to provide the appropriate recommendation for safety and health of laundries. A total of 20 laundries located in tile Gyungi district area were surveyed from July 20 to September 15, 2000. The prevalence of laundries having a stove and gas range were found to be 25 % and 55 %, respectively. Smoking is not allowed in 60 % of the laundries. Only 10 % of dry-cleaners were isolated. Ventilation systems in laundries had not been annually inspected. Most of the workers didn't put on respirators, MSDS were not available, and storage bottles did not contain warning labels. The bulk samples of dry cleaning agent include many chemicals that are not controlled by the MOL in Korea. The detected airborne organic solvents in the laundries were benzene, toluene, p-xylene, m-xylene, o-xylene, perchloroethylene, and 2-butoxy ethanol. The airborne concentrations of organic solvents were much less than the occupational exposure limits proposed by the Ministry of Labor(MOL) in Korea. But the concentrations of benzene exceeded the TLV of ACGIH. This study showed that the current status of occupational safety and health was not appropriate for workers in laundries. It is recommended that laundry workers should be educated for the treatment and storage of hazardous organic solvents to improve the occupational safety and health of the working environment as well as MSDS usage. Also, extended research and survey for the organic solvents that are not controlled by the MOL has to be conducted.

  • PDF

Evaluation of Atopy and Its Possible Association with Indoor Bioaerosol Concentrations and Other Factors at the Residence of Children (초등학생 가정을 대상으로 한 바이오에어로졸 노출과 아토피와의 연관성 평가)

  • Ha, Jin-Sil;Jung, Hea-Jung;Byun, Hyae-Jeong;Yoon, Chung-Sik;Kim, Yang-Ho;Oh, In-Bo;Lee, Ji-Ho;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.406-417
    • /
    • 2011
  • Objectives: Exposure to bioaerosols in the indoor environment could be associated with a variety adverse health effects, including allergic disease such atopy. The objectives of this study were to assess children's exposure to bioaerosol in home indoor environments and to evaluate the association between atopy and bioaerosol, environmental, and social factors in Ulsan, Korea. Methods: Samples of viable airborne bacteria and fungi were collected by impaction onto agar plates using a Quick Take TM 30 and were counted as colony forming units per cubic meter of air (CFU/$m^3$). Bioaerosols were identified using standard microbial techniques by differential stains and/or microscopy. The environmental factors and possible causes of atopy based on ISAAC (International Study of Allergy and Asthma in Childhood) were collected by questionnaire. Results: The bioaerosol concentrations in indoor environments showed log-normal distribution (p < 0.01). Geometric mean (GM) and geometric standard deviation (GSD) of airborne bacteria and fungi in homes were 189.0 (2.5), 346.1(2.0) CFU/$m^3$, respectively. Indoor fungal levels were significantly higher than those of bacteria (p < 0.001). The concentration of airborne bacteria exceeded the limit recommended by the Korean Ministry of Environment, 800 CFU/$m^3$, in three out of 92 samples (3.3%) from 52 homes. The means of indoor to outdoor ratio (I/O) for airborne bacteria and fungi were 8.15 and 1.13, respectively. The source of airborne bacteria was not outdoors but indoors. GM of airborne bacteria and fungi were 217.6, 291.8 CFU/$m^3$ in the case's home and 162.0, 415.2 CFU/$m^3$ in the control's home respectively. The difference in fungal distributions between case and control were significant (p = 0.004) and the odds ratio was 0.996 (p = 0.027). Atopy was significantly associated with type of house (odds ratio = 1.723, p = 0.047) and income (odds ratio = 1.891, p = 0.041). Some of the potential allergic fungal genera isolated in homes were Cladosporium spp., Botrytis spp., Aspergillus spp., Penicillium spp., and Alternatia spp. Conclusions: These results suggest that there this should be either 'was little' meaning 'basically no significant association was found' or 'was a small negative' mean that an association was found but it was minor. It's a very improtant distinction. Association between airborne fungal concentrations and atopy and certain socioeconomic factors may affect the prevalence of childhood atopy.

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.