• 제목/요약/키워드: air-sea boundary layer

검색결과 28건 처리시간 0.024초

Direct Observation of Radiative Flux in the Southern Yellow Sea

  • Lu, Lian-Gang;Yu, Fei;Diao, Xinyuan;Guo, Jingsong;Wang, Huiwu;Wei, Chuanjie
    • Ocean Science Journal
    • /
    • 제43권2호
    • /
    • pp.115-126
    • /
    • 2008
  • Direct measurements of four radiative components at air-sea boundary layer were conducted in the southern Yellow Sea during three cruises (seasons) in 2007. Simultaneous observations of meteorological (cloud cover, air temperature and humidity) and oceanographic (sea surface temperature) parameters were carried out. Observational results of radiative fluxes and meteorological and oceanographic parameters are presented. Mean diurnal cycles of four radiative components, net radiation, and sea surface albedo are calculated to achieve averages in different seasons. Net radiative fluxes in three seasons (winter, spring, autumn) are 8, 146, $60\;W/m^2$, respectively. Comparisons between the observed radiative fluxes and those estimated with formulas are taken.

부산지역 겨울철 고농도 미세먼지 발생일의 기상학적 특성 (Meteorological Characteristics of the Wintertime High PM10 Concentration Episodes in Busan)

  • 전병일
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.815-824
    • /
    • 2012
  • The purpose of this study was to analyze the meteorological characteristics of wintertime high PM10 concentration episodes in Busan. $PM_{10}$ concentration has been reduced for the past four years and recorded near or exceeded 100 ${\mu}g/m^3$ (national standard of $PM_{10}$). High concentration episodes in Busan were 6 case, $PM_{2.5}/PM_{10}$ ratio was 0.36~0.39(mean 0.55). High $PM_{10}$ concentration occurred during higher air temperature, more solar radiation and sunshine, lower relative humidity, and smaller cloud amount. Synoptically, it also occurred when Busan was in the center or the edge of anticyclone and when sea breeze intruded. An analysis of upper air sounding showed that high $PM_{10}$ concentration occurred when surface inversion layer and upper subsidence inversion layer existed, and when boundary layer depth and vertical mixing coefficient were low. An analysis of backward trajectory of air mass showed that high $PM_{10}$ concentration was largely affected by long range transport considering that it occurs when air mass is intruded from China.

항공기를 이용한 서해안에서의 SO$_2$ 및 NO$_{x}$의 측정 (Aircraft Measurement of SO$_2$, NO$_{x}$ over Yellow Sea Area)

  • 김병곤;차준석;한진석;박일수;김정수;나진균;최덕일;안준영;강창국
    • 한국대기환경학회지
    • /
    • 제13권5호
    • /
    • pp.361-369
    • /
    • 1997
  • In order to investigate the abundance and transboundary fluxes of air pollutants over the Yellow Sea, airborne measurements were made aboard the SF-600 aircraft (Pan-Asia Engineering) in March, 1996. The data presented in this paper are preliminary results and airborne experiment will be carried out until 1999. The vertical profile of relevant meteorological parameters such as temperature, water vapor, wind direction and wind speed were also observed at Taean. Mixing layer height was about 1000~1100m during the flights. The SO$_2$ and NO$_{x}$ concentrations were 3~6 ppb and 5~7 ppb below 1000 m, within 1 ppb and 3~5 ppb at 1000~2000m, respectively. Backward trajectory analyses were also carried out. A mathematical method by Lelieveld et al.(1989) was used to estimate the flux of air pollutants through the planetary boundary layer of Yellow Sea area. Transboundary fluxes were calculated using the measurement results with respect to the pollutants concentration, depth of the planetary boundary layer, wind speed and wind direction. The estimated transboundary flux of SO$_2$through the western boundary of Korea was about 39~42 tons/hour.r.

  • PDF

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • 한국환경과학회지
    • /
    • 제13권11호
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구 (A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo)

  • 김희종;윤일희;권병혁
    • 한국지구과학회지
    • /
    • 제25권7호
    • /
    • pp.629-636
    • /
    • 2004
  • 구름이 유입하는 경우 해양대기경계층의 발달을 분석하기 위하여, 울릉도에서 관측한 레윈존데 자료와 AWS 자료, 위성사진, 동해에 설치된 부이 자료를 이용하였다. 이 자료를 이용하여 열의 이류와 표층 열속, 구름 유입에 따른 복사에너지를 추정하였다. 혼합층 내의 열 변화 및 혼합층의 발달을 표층 열속과 구름에 의한 장파복사속으로 설명하였다. 열속의 변화를 알아보기 위해 벌크법을 이용하였다. 울릉도, 동해상의 부이, 포항에서 관측한 자료를 이용한 열수지 방정식으로 대기경계층의 열보존 관계를 분석하였다. 구름의 유입으로 인해 일몰 후 지면의 복사냉각이 방해되고, 구름에서 장파복사가 방출된다. 그로 인해 야간에 오히려 기온이 증가하였다. 또 남서쪽으로부터 따뜻한 공기가 이류되어, 하층 대기의 온도를 증가시켰다. 이러한 이유로 혼합층이 파괴되지 않고, 잔류층을 형성하며 남아있었다.

Evaluation of Methyl lodide ($CH_3I$) Flux Based on Airborne field Observations

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권E2호
    • /
    • pp.43-52
    • /
    • 2004
  • A total of 10 boundary layer sampling events over the Pacific Ocean were analyzed for the purpose of defining the sea-to-air $CH_3$I flux using a mass balance photochemical model. These events were recorded on the National Center for Atmospheric Research (NCAR) C-130 aircraft as part of the Aerosol Charac-terization Experiment (ACE 1). The latitude range, covered by these events, was 2$^{\circ}$ N to 55$^{\circ}$ S. The flux ranges were 4 to 33 nmol m$^{-2}$ day$^{-1}$ , with an average value of 11$\pm$8 nmol m$^{-2}$ day$^{-1}$ . This study also indicated that the current approach to estimate the flux was not systematically different from the sea-air exchange model.

Evaluation of the Effect of Regional Pollutants and Residual Ozone on Ozone Concentrations in the Morning in the Inland of the Kanto Region

  • Kiriyama, Yusuke;Shimadera, Hikari;Itahashi, Syuichi;Hayami, Hiroshi;Miura, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Increasing ozone concentrations are observed over Japan from year to year. One cause of high ozone concentration in the Kanto region, which includes areas inland from large coastal cities such as metropolitan Tokyo, is the transportation of precursors by sea breezes. However, high ozone concentrations are also observed in the morning, before sea breezes approach inland areas. In this point, there would be a possibility of residual ozone existing above the nocturnal boundary layer affects the ozone concentration in the following morning. In this study, we utilized the Weather Research and Forecasting model and the Community Multiscale Air Quality model to evaluate the effect of regional precursors and residual ozone on ozone concentrations over the inland Kanto region. The results show that precursors emitted from non-metropolitan areas affected inland ozone concentrations more than did precursors from metropolitan areas. Moreover, calculated results indicate downward transportation of residual ozone, resulting in increased concentration. The residual ozone was also affected by precursors emitted from non-metropolitan areas.

기단변질형 한반도 강설 모의에 있어서 물리과정 모수화 과정의 효과 (Effects of Physical Parameterizations on the Simulation of a Snowfall Event over Korea Caused by Air-mass Transformation)

  • 설경희;홍성유
    • 대기
    • /
    • 제16권3호
    • /
    • pp.203-213
    • /
    • 2006
  • The objective of this paper is to investigate the effects of physical parameterization on the simulation of a snowfall event over Korea caused by air-mass transformation by using the PSU/NCAR MM5. A heavy snowfall event over Korea during 3-5 January 2003 is selected. In addition to the control experiments employing simple-ice microphysics scheme, MRF PBL scheme, and original surface layer process, three consequent physics sensitivity experiments are performed. Each experiment exchanges microphysics (Reisner Graupel), boundary layer (YSU PBL) schemes, and revised surface layer process with a reduced thermal roughness length for the control run. The control run reproduces an overall pattern of snowfall over Korea, but with a high bias by a factor of about 2. As revealed in the previous studies, the cloud microphysics and PBL parameterizations do not show a significant sensitivity for the case of snowfall. A more sophisticated cloud processes does not reveal a discernible effect on the simulated snowfall. Further, high bias in snowfall is exaggerated when a more realistic PBL scheme is employed. On the other hand, it is found that the revised surface layer process plays a role in improving the prediction of snowfall by reducing it. Thus, it is found that a realistic design of surface layer physics in mesoscale models is an important factor to the reduction of systematic bias of the snowfall over Korea that is caused by air-mass transformation over the Yellow sea.

연직관측자료를 통한 복잡 연안지역의 오존 이류특성 (Characteristics of Ozone Advection in Vertical Observation Analysis Around Complex Coastal Area)

  • 이화운;박순영;이순환;임헌호
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.57-74
    • /
    • 2009
  • In order to clarify the vertical ozone distribution in planetary boundary layer of coastal area with complex terrain, an observation campaign was carried out around Gwangyang Bay with dense pollutant emission sources during two days from June, 4 2007. For this observation are Radiosonde, SODAR(SOnic Detection And Ranging) and Tethered ozone sonde were employed. The surface meteorological and photochemical observation data provided by AWS (Automatic Weather System) and AQMS (Air Quality Monitoring System) were also applied for analysis. Synoptic condition is strongly associated with lower level ozone distribution in complex terrain coastal area. Since mesoscale circulation induced by difference of characteristics of land and sea and orographic forcing is predominant under calm synoptic condition, vertical distribution of ozone is complicate and vertical ozone concentration greatly fluctuated. However in second day when synoptic influence become strong, ozone concentration in lower levels is vertically uniform regardless of observation level. This results in vertical observation indicates that vertical ozone distribution is often determined by synoptic condition and also affects surface ozone concentration.

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF