• Title/Summary/Keyword: air-particle flow

Search Result 394, Processing Time 0.025 seconds

Effects of Operating Conditions of an Air-Classifier Mill on the Particle Size of Fine Powder (공기분급식 미분쇄기의 운전조건이 미세분말의 크기에 미치는 영향)

  • Shin, Eung-Soo;Kim, Kee-Sung;Kim, Young-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.426-433
    • /
    • 2016
  • This paper investigates the effects of operating conditions of an air classifier mill (ACM) on the particle sizes of PVC and rice hull. Based on the Box-Behnken matrix, the pulverization experiments were performed considering three operating factors: the air flow rate, the classifier speed and the mill speed. The response surface methodology was applied to identify the effects of the operating factors on the particle size. Results show that the particle sizes are governed by the linear variations of the operating factors. As less air is supplied and the mill rotates more slowly, the powder of both PVC and rice hull becomes finer. Furthermore, the classifier speed has a significant effect on the PVC powder but almost no effect on the rice hull powder. Thus, it is found that strong interactions exist between the material characteristics of a particle and the operating conditions of the ACM.

Experimental Study of Small Cyclones as Particle Concentrators

  • Kim Hyeon-Tae;Y. Zhu;W. C. Hinds;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.407-408
    • /
    • 2001
  • This paper describes the effects of varying the minor flow on particle collection efficiency and particle concentration in small cyclones. A cyclone haying a minor flow pumped out from its dust outlet is referred to as a virtual cyclone in this study although the terminology has been used for other types of devices (Torczynski and Rader, 1997). The virtual cyclones tested here have a rectangular inlet and circular outlet similar to the conventional cyclone. (omitted)

  • PDF

Effect of Performance of Aerosol Charge Neutralizers on the Measurement of Highly Charged Particles Using a SMPS (에어로졸 중화기의 성능이 고하전 입자의 크기분포 측정에 미치는 영향)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1498-1507
    • /
    • 2003
  • A SMPS(scanning mobility particle sizer) system measures the number size distribution of particles using electrical mobility detection technique. An aerosol charge neutralizer, which is a component of the SMPS, is a bipolar charger using a radioactive source to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. In this study, the effect of the particle charging characteristics of two aerosol charge neutralizers on the measurement using a SMPS system was experimentally investigated for highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0.5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.3 to 3.0 L/min. The results show that the non-equilibrium character in particle charge distribution appears as the air flow rate increases although the particle number concentration is relatively low in the range of 1.5∼2x10$^{6}$ particles/㎤. The low neutralizing efficiency of the $^{85}$ Kr aerosol charge neutralizer for highly charged particles can cause to bring an artifact in the measurement using a SMPS system. However, the performance of the $^{210}$ Po aerosol charge neutralizer is insensitive to the air flow rate.

HYDRAULIC ANALYSIS OF OXYGEN TRANSFER THROUGH AIR ENTRAINMENT IN RIPARIAN RIFFLES

  • Kim, Jin-Hong
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.127-139
    • /
    • 2003
  • This paper presents the hydraulic analysis of the oxygen transfer through the air entrainment and the relationships between the efficiency of the oxygen transfer and the hydraulic parameters in the riparian riffles. Field survey on the pool-riffle formation of the river reach and the measurements of the oxygen transfer in the riffles were performed. Air entrainment occurred more frequently in the edged gravels rather than in the round and edgeless ones, and it was formed mainly from behind the trailing edges of the gravels. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number, but to be not closely related to the particle diameter. Average value of oxygen transfer in the riffles of study area was about 0.085, which shows good efficiency compared with results of smooth chute. Variation of the water level, which increases in proportion to the flow velocity and the flow discharge, seems to make the air entrainment more active, but has not been verified quantitatively. Relationships between the air entrainment and the variation of the water level must be considered in the further study.

  • PDF

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

Effect On the Air Permeability of Composting Bulking Agent (퇴비화 첨가제의 공기투과성에 대한 분석)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • Common bulking agents in composting system include woody materials such as sawdust and woodchips. These bulking agents are mainly used for the purpose of the proper control of C/N ratio and moisture content in the composting. The topic for the effect on air permeability of bulking agents has far received relatively little attention in the composting field. This study investigated the effect of bulk density, moisture content, air-filled porosity, particle size and air flow rate on air permeability of several mixture ratios of sawdust and woodchip bulking agent. Increasing the moisture contents, the air-filled porosity was decreased and the particle size was increased for all kinds of bulking agent mixtures. Especially, with the increasing of mixing ratio of woodchip, these effects were sharply magnified. The air permeability respond to air-filled porosity was very similar to that for moisture content which was anticipated the linear relationship between air-filled porosity and moisture content. Above the region of moisture content 0.25 or 0.43(d.b.)(20 or 30% w.b.), the pressure drop decreased even though air-filled pore spaces were filling with water. Especially, to the particle size of 5 mm the pressure drop was decreased exponentially, so the air permeability was dramatically improved. By the water had the role of binding of the small particles, the macropores less resistances to air flow were created in the matrix. The effect of particle size on air permeability was much stronger than that of air-filled porosity or moisture content. And it is needed the preparing of initial particle size above 5 mm for efficient composting.

A Numerical Study on the Design of a Grease Filter for Kitchen Ventilation (주방환기용 그리스 필터의 형상설계에 관한 수치해석)

  • 김기정;배귀남;김영일;허남건
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.619-629
    • /
    • 2003
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. Since the inertial impaction is a dominant particle removal mechanism of the grease filter, the performance of the filter is greatly affected by the geometry. This numerical study has been conducted to investigate the effect of geometry on the performance of grease filters for four models having nominal flowrate of 100 m$^3$/h. Four models were designed by changing the shape of impaction surface, the length of eyelid, and the number of eyelids of the grease filter. The flow field and particle trajectories in the grease filter with a flow chamber were simulated using the commercial code of STAR-CD. The difference of air velocity and pressure distributions among four models was discussed in detail. The collection efficiency curves and the pressure drops of four models were also compared. It was found that the grease filter model with flat top surfaces shows highest performance among four models, having high particle collection efficiency and relatively low pressure drop. The cutoff diameter of this model representing 50-% collection efficiency is about 7.1 ${\mu}{\textrm}{m}$ for water droplets at 100 m$^3$/h.

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

Numerical study on the Air Flow Characteristics inside a DPF with Diffuser Shape (확대관 형상에 따른 DPF 내의 유동특성 해석)

  • Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Kim, Soong-Kee;Kim, Seong-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.796-802
    • /
    • 2005
  • Numerical analysis has been conducted for improving air flow characteristics in the exhaust aftertreatment system of diesel-fueled passenger cars by changing axial length and cone shape of a DPF diffuser. The results of air velocity and static pressure distributions along with air flow uniformity results suggest that a diffuser shape with 2D or 3D function type is better for air flow patterns in front of a DPF.

  • PDF