• 제목/요약/키워드: air-methane flame

검색결과 195건 처리시간 0.023초

정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계 (Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity)

  • 오창보;최병일;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

동축류 확산화염에서 질소첨가가 Soot발생에 미치는 영향 (Dilution and Thermal Effects of N2 Addition on Soot Formation in Co-flow Diffusion Flame)

  • 엄재호;이종호;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.185-191
    • /
    • 2002
  • The influence of N2 addition on soot formation, flame temperature and NOx emissions is investigated experimentally with methane fuel co-flow diffusion flames. The motivation of the present investigation is the differences in NOx reduction reported between fuel-side and oxidizer-side introduction of N2. To determine the influence of dilution alone, fuel was diluted with nitrogen while keeping the adiabatic flame temperature fixed by changing the temperature of the reactants. And to see the thermal effect only, air was supplied at different temperature without N2 addition. N2 addition into fuel side suppressed the soot formation than the case of oxidizer-side, while flame temperature enhanced the soot formation almost linearly. These results reveals the relative influences of the thermal, concentration effects of N2 additives on soot formation In accordance with experimental study, numerical simulation using CHEMKIN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results. Emission test revealed that NOx emissions were affected by not only flame temperature but also N2 addition.

  • PDF

라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측 (Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF)

  • 최경민
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

메탄 산소 연소에 있어서 화염 소화에 대한 연구 (A Study on Flame Extinction in Oxymethane Combustion)

  • 김태형;권오붕;박정;길상인;윤진한;박종호
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.34-41
    • /
    • 2015
  • Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.

저신장율 대향류확산화염에서 에지화염 진동불안정성 (Edge-flame Instability in A Low Strain-rate Counterflow Diffusion Flame)

  • 박준성;김현표;박정;김성초;김정수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.295-298
    • /
    • 2006
  • 메탄/질소-공기 저 신장율 대향류 확산화염에서 화염소화 거동과 에지화염의 진동불안정성에 대한 실험적 연구를 수행하였다. 특히, 저 신장율 화염에서 복사열손실 뿐만 아니라 측면전도 열손실이 현저해 진다. 각 전체 신장율에서 화염진동의 시작조건과 진동모드를 제안하였다. 화염길이는 측면 전도열손실과 밀접한 관계를 가지고 있으며 화염소화와 화염진동에 중대한 영향을 미친다. 저 신장율 에지화염의 진동모드는 성장모드, 감쇠모드 그리고 조화모드로 요약된다. 또한, 각 진동모드의 조건을 전체신장율과 희석제의 몰분율에 대한 안전화선도를 작성하였다.

  • PDF

축소 반응 메카니즘으로부터 예혼합 화염 및 자발화 계산 (Premixed Flames and Auto-ignition Computations with the Short Chemical Mechanism)

  • 이수각;이기용
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.279-281
    • /
    • 2012
  • A short chemical mechanism was developed with the chemical model reduction strategy based on the use of Simulation Error Minimization Connectivity Method(SEM-CM). We examined the accuracy resulting from using this mechanism, as compared with the full mechanism, for premixed flames and auto-ignition of methane-air mixture under high pressures. These comparisons are in good agreement, but it has a little divergence to predict the ignition delay time at high pressure conditions as compared with experiment results.

  • PDF

자발화된 층류 부상화염에 대한 점화지연시간의 영향 (Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames)

  • 최병철
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1025-1031
    • /
    • 2011
  • 자발화 특성은 디젤 및 PCCI 엔진의 설계에서 중요한 인자이다. 특히, 디젤분무화염은 자발화현상에 의해서 형성되어 노즐에서 부상된다. 노즐과 부상화염 사이의 영역에서 분무된 디젤의 중앙으로 주위 공기의 유입이 발생하기 때문에, 그 부상된 화염은 매연 생성에 영향을 준다. 본 연구에서 간단한 모델로써 동축류 제트를 적용하였고, 점화지연시간에 대한 자발화 과정에서 발생하는 열손실의 영향을 확인하였다. 메탄($CH_4$), 에틸렌($C_2H_4$), 에탄($C_2H_6$), 프로핀($C_3H_6$), 프로판($C_3H_8$), 및 노말 부탄(n-$C_4H_{10}$)의 연료들을 고온의 공기로 분사하였으며 자발화된 부상화염의 높이를 측정하였다. 그 결과로 자발화된 부상화염의 높이와 열손실을 고려한 점화지연시간과의 상관관계를 결정하였다.

층류 동축류 제트에서 공기측 헬륨 희석이 화염진동에 미치는 영향 (Helieum-dilution Effect of Coflow Air on Self-excitation in Laminar Coflow Jet Flames)

  • 이원준;박정;권오붕;백세현;고성호
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.51-59
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate the helium-dilution effect of coflow air on self-excitation. For various helium mole fractions and jet velocities, two types of self-excitation were observed: buoyancy-driven self-excitation and Lewis-number-induced self-excitation(here after called Le-ISE) coupled with buoyancy-driven one. The difference between buoyancy-driven and Le-ISE is clarified by using the Mie-scattering visualization as well as exploring the different features. The mechanism of Le-ISE is proposed. When the system Damk$\ddot{o}$hler number was lowered, Le-ISE is shown to be launched. Le-ISE is closely related to heat loss, in that it can be launched in even methane jet flame (Lewis number less than unity) with helium-diluted coflow air. Particularly, Le-ISE becomes significant as the Damk$\ddot{o}$hler number decreases and heat-loss becomes significant.

미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과 (Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment)

  • 오창보;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

스월을 강화한 메탄/공기 부분 예혼합화염에서 자발광($OH^{\ast}$, $CH^{\ast}$, 그리고 $C_2^{\ast}$) 배출특성과 배기배출물에 관한 실험적 연구 (An Experimental Investigation of the Characteristic of Radical ($OH^{\ast}$, $CH^{\ast}$, and $C_2^{\ast}$) and Pollutant Emission in Partially Premixed Swirling Methane-air Flames.)

  • 안경민;정용기;장영준;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.320-327
    • /
    • 2005
  • An experimental study was performed to investigate the effects of partially premixing, varying the equivalence ratios from $1.36{\sim}{\infty}$, and swirlers with swirl numbers of 0, 0.28, 0.64, and 1.32, on the characteristic of radical ($OH^{\ast}$, $CH^{\ast}$, and $C_2^{\ast}$) and pollutant emission in partially premixed swirling flames. The signal from the electronically excited state of $OH^{\ast}$, $CH^{\ast}$, and $C_2^{\ast}$ was detected through a band pass filter with a photo multiplier tube, and flow fields images were detected through a schlieren system. The results demonstrated that the flame height decreases and jet spreading angle increase with increasing a swirl number. The more momentum ratio and swirl number increase, the more decrease flame height, and the generation of sooting flame is promoted.

  • PDF