• Title/Summary/Keyword: air-methane counterflow flame

Search Result 49, Processing Time 0.019 seconds

Comparison of CARS CO and Temperature Measurements with Numerical Calculation for Methane/Air Premixed Flames (메탄/공기 예혼합화염에서 CARS를 이용한 CO 농도 및 온도측정과 수치해석 결과의 비교)

  • 강경태;정석호;박승남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1333-1339
    • /
    • 1995
  • Recently developed technique of measuring minor species concentration by using the modulation dip in broadband CARS has been applied to the flame structure study of methane/air premixed flames in a counterflow. This method used the modulation dip from the cold band CO Q-branch resonant signal superimposed on the nonresonant background. The measured CO concentration profile in a symmetric and unsymmetric methane/air premixed flames together with the velocity and temperature by using LDV and CARS have been compared with the numerical results adopting detailed chemistry modeling. The results show that there is a satisfactory agreement between the experimental data and numerical results for velocities, temperatures and CO concentrations. And the modulation dip technique of measuring minor species, such as CO is a viable tool for a quantitative measurement in a flame.

A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames (상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구)

  • Moon, Chang-Woo;Park, Jeong;Gwon, O.-Bung;Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

Structure and Suppression of Nonpremixed Counterflow Flames (비예혼합 대향류화염의 구조와 소화)

  • Anthony Hamins;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • Measurements with filaments and thermocouples and computations with Oppdif and FDS were carried out to investigate the impact of flame strain, agent addition, and buoyancy on the structure and extinction of nonpremixed counterflow flames. Measurements through 2.2 s drop tests in microgravity conditions and experiments in normal gravity conditions were compared with the results of computations. For the global strain rates 7 s$^{-1}$ through 100 s$^{-1}$ , the turning point behavior in the critical nitrogen concentration at O-g was confirmed. The effects of buoyancy, that is, changes in the flame curvature and thickness were also confirmed by the computations with FDS. There was agreement in the peak flame temperature and its position between the computations and the measurements in the near extinction methane/air diffusion flames in microgravity.

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Fuel Concentration on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 연료농도가 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • The axisymmetric methane-air counterflow flame was simulated to investigate changes in the flame structure due to the fuel concentration and to evaluate the numerical method. The global strain rates $a_g=20,\;60,\;90\;s^{-1}$ and the mole fractions of methane $x_m=20,\;50,\;80\%$ in the fuel stream were taken to be numerical parameters. The axisymmetric simulation was conducted by using the Fire Dynamics Simulator (FDS) which employed a mixture fraction combustion model, and the results were compared with those of OPPDIF, which is an one-dimensional flamelet code and includes detail chemical reactions. In all the cases tested, there was good agreement in the temperature and axial velocity profiles between the axisymmetric and one-dimensional simulations. It was shown that the flame thickness and peak flame temperature increase and the flame radius decreases as the fuel concentration increases.

  • PDF

Computation of Nonpremixed Methane-Air Flames in Microgravity II. Radius and Thickness of Flame (무중력에서의 비예혼합 메탄-공기 화염의 전산 II. 화염의 반경과 두께)

  • Park Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.124-129
    • /
    • 2004
  • To evaluate the numerical method in simulation of diffusion flames and to see the effects of strain rate and fuel concentration on the flame radius and thickness, the nonpremixed methane-air counterflow flames in microgravity were simulated axisymmetrically by using the MST Fire Dynamics Simulator (FDS). The $1000^{\circ}C$ based flame radius and thickness were investigated for the mole fraction of methane in the fuel stream, $X_m=20,\;50,\;and\;80\%$ and the global strain rates $a_g=20,\;60,\;and\;90s^{-1}$ for each mole fraction. The flame radius increased with the global strain rate while the flame thickness decreased linearly as the global strain rate increased. The flame radius decreased as the mole fraction increased, but it was not so sensitive to the mole fraction compared with the global strain rate. Since there was good agreement in the nondimensional flame thickness obtained with OPPDIF and FDS respectively, it was confirmed that FDS is capable of predicting well the counterflow flames in a wide range of strain rate and fuel concentration.

Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame (메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과)

  • Park, Jeong;Keel, Sang-In;Yun, Jin-Han
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

An Experimental Study on the $CH_4{\;}/{\;}Air{\;}/{\;}CO_2$ Counterflow Diffusion Flame ($CH_4{\;}/{\;}Air{\;}/{\;}CO_2$ 대향류 확산화염에 대한 실험적 연구)

  • Lee, Chong-Won;Lee, Chun-Beom;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.31-45
    • /
    • 2001
  • The effect of adding carbon dioxide to methane-air flame was investigated experimentally. Measurements included extinction limits, flame temperature and photographic investigation of flame. A diffusion flame was stabilized between counterflowing streams of methane diluted with carbon dioxide and air diluted with carbon dioxide. Extinction limits and temperature for such flames were measured over a wide parametric range and were compared with those for other flames that fuel or oxidant was diluted with nitrogen or argon. The experimental results indicate that extinction phenomena can be explained by thermal effect and as an amount of carbon dioxide in fuel or oxidant increases, greatly as compared with other flames flame-temperature falls and flame-thickness is reduced.

  • PDF

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame (메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF

A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame (대향류 확산화염의 고온공기 연소특성에 관한 수치해석)

  • Cho, Eun Seong;Kobayashi, Hideaki;Chung, Suk Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF