• Title/Summary/Keyword: air-layering

Search Result 14, Processing Time 0.018 seconds

The Limitation of Air Carriers' Cargo and Baggage Liability in International Aviation Law: With Reference to the U.S. Courts' Decisions (국제항공법상 화물.수하물에 대한 운송인의 책임상한제도 - 미국의 판례 분석을 중심으로 -)

  • Moon, Joon-Jo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.22 no.2
    • /
    • pp.109-133
    • /
    • 2007
  • The legal labyrinth through which we have just walked is one in which even a highly proficient lawyer could easily become lost. Warsaw Convention's original objective of uniformity of private international aviation liability law has been eroded as the world community ha attempted again to address perceived problems. Efforts to create simplicity and certainty of recovery actually may have created less of both. In any particular case, the issue of which international convention, intercarrier agreement or national law to apply will likely be inconsistent with other decisions. The law has evolved faster for some nations, and slower for others. Under the Warsaw Convention of 1929, strict liability is imposed on the air carrier for damage, loss, or destruction of cargo, luggage, or goods sustained either: (1) during carriage in air, which is comprised of the period during which cargo is 'in charge of the carrier (a) within an aerodrome, (b) on board the aircraft, or (c) in any place if the aircraft lands outside an aerodrome; or (2) as a result of delay. By 2007, 151 nations had ratified the original Warsaw Convention, 136 nations had ratified the Hague Protocol, 84 had ratified the Guadalajara Protocol, and 53 nations had ratified Montreal Protocol No.4, all of which have entered into force. In November 2003, the Montreal Convention of 1999 entered into force. Several airlines have embraced the Montreal Agreement or the IATA Intercarrier Agreements. Only seven nations had ratified the moribund Guatemala City Protocol. Meanwhile, the highly influential U.S. Second Circuit has rendered an opinion that no treaty on the subject was in force at all unless both affected nations had ratified the identical convention, leaving some cases to fall between the cracks into the arena of common law. Moreover, in the United States, a surface transportation movement prior or subsequent to the air movement may, depending upon the facts, be subject to Warsaw, or to common law. At present, International private air law regime can be described as a "situation of utter chaos" in which "even legal advisers and judges are confused." The net result of this barnacle-like layering of international and domestic rules, standards, agreements, and criteria in the elimination of legal simplicity and the substitution in its stead of complexity and commercial uncertainty, which manifestly can not inure to the efficient and economical flow of world trade. All this makes a strong case for universal ratification of the Montreal Convention, which will supersede the Warsaw Convention and its various reformulations. Now that the Montreal Convention has entered into force, the insurance community may press the airlines to embrace it, which in turn may encourage the world's governments to ratify it. Under the Montreal Convention, the common law defence is available to the carrier even when it was not the sole cause of the loss or damage, again making way for the application of comparative fault principle. Hopefully, the recent entry into force of the Montreal Convention of 1999 will re-establish the international legal uniformity the Warsaw Convention of 1929 sought to achieve, though far a transitional period at least, the courts of different nations will be applying different legal regimes.

  • PDF

The Rooting Ability of Selected Clones of Populus alba×glandulosa Hybrid (Populus alba×glandulosa의 Clone간(間) 발근력(發根力)의 차이(差異))

  • Kim, Chung-Suk;Son, Doo-Sik;Chung, Sang-Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 1978
  • In order to investigate the difference of rootability between 15 clones of Populus alba${\times}$glandulosa selected based on the growth performance, rooting of cutting experiments with these 15 clones were conducted at the nursery for six years from 1970 to 1975. Cutting experiments in a temperature controlled incubator in which the temperature of the cutting bed were set to $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$ were also performed. Along with these experiments air layering experiments were performed to compare with the rootabilities obtained from nursery trial. The results obtained so far could be summarized as follows. 1. The best rooting clones were 65-22-4 and 65-22-11, and the average rooting percentages of these two clones for six years were 76.7%, and 72.9% respectively. The poorest rooting clone was 66-6-8 showing average rooting percentage of 45.8%. 2. The middle class of rooting percentage was ocuppied by the clones; 66-14-29, 66-14-93, 66-25-5 and 67-6-3, and the range of their rooting percentage was 60~69% on average. 3. The rooting performances observed through the nursery, the incubator and the air layering experiments were almost the same with exception of few clones. 4. P. alba${\times}$glandulosa showed the best rooting percentage at the cutting bed of $20^{\circ}C$ 5. The most roots, i.e. 78.5% of root per cutting were developed from the bottom part of the cutting shoot. 6. Adventitious and call use roots could observe in the cuttings.

  • PDF

The effect of grid number and the location and size of the fire source on the critical velocity in a road tunnel fire (도로터널 임계풍속 산정에 격자개수 및 화원의 크기와 위치가 미치는 영향)

  • Lee, Seung-Chul;Kim, Sang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.183-195
    • /
    • 2012
  • This study conducted comparative analysis to estimate critical velocity in tunnel fire under variation of grid number and the location and size of the fire source using three-dimensional computational fluid dynamics. In the target tunnel, by one-dimensional way, the calculated critical velocity in the tunnel, 2.22 m/s was estimated, if appling hydraulic diameter, instead of the tunnel height. According to six numerical analysis, each grid number has different position, temperature, and CO concentration of back-layering. In the case of the subject, the case 1 with 0.84 million grid was found to be the most ideal. According to the location and size of the fire source, after three cases for three-dimensional numerical analysis was performed, it is resulted that the location and size of the fire source affect the critical velocity, because air velocity distribution, temperature distribution and CO concentration distribution showed different each case. This is due to the difference of heat exchange area and locations. Therefore, it is necessary to decide appropriate grid number, and the location and size of the fire source for processing techniques through comparison with actual experiment results and three-dimensional analysis.

A Study of Cyber Operation COP based on Multi-layered Visualization (멀티레이어드 시각화를 적용한 사이버작전 상황도 개발에 관한 연구)

  • Kwon, Koohyung;Kauh, Jang-hyuk;Kim, Sonyong;Kim, Jonghwa;Lee, Jaeyeon;Oh, Haengrok
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.143-151
    • /
    • 2020
  • The cyber battlefield called the fifth battlefield, is not based on geological information unlike the existing traditional battlefiels in the land, sea, air and space, and has a characteristics that all information has tightly coupled correlation to be anlayized. Because the cyber battlefield has created by the network connection of computers located on the physical battlefield, it is not completely seperated from the geolocational information but it has dependency on network topology and software's vulnerabilities. Therefore, the analysis for cyber battlefield should be provided in a form that can recognize information from multiple domains at a glance, rather than a single geographical or logical aspect. In this paper, we describe a study on the development of the cyber operation COP(Common Operational Picture), which is essential for command and control in the cyber warfare. In particular, we propose an architecure for cyber operation COP to intuitively display information based on visualization techniques applying the multi-layering concept from multiple domains that need to be correlated such as cyber assets, threats, and missions. With this proposed cyber operation COP with multi-layered visualization that helps to describe correlated information among cyber factors, we expect the commanders actually perfcrm cyber command and control in the very complex and unclear cyber battlefield.