• Title/Summary/Keyword: air-drying method

Search Result 372, Processing Time 0.025 seconds

Development of the mixed desiccant cooling dryer (복합 냉풍 건조기 개발)

  • Choi, Hyun-Woong;Kim, Young-Il;Park, Seung-Tae;Yoo, Kyung-Rok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.242-247
    • /
    • 2009
  • The present study has been conducted to reduce the cold air drying rate. According to the cold air drying method, the quality-excellent product could be made and there would be little change of color, taste and smell. As compared with the hot air drying, the cold air drying equipment has the superior dehumidification in a constant drying zone. However, in a falling drying zone that equipment is not energy-efficient because the drying period could be longer by the dehumidificated.

  • PDF

Comparison of Scanning Electron Microscopic Specimens Dried with Different Methods (건조기법을 달리한 SEM 시료상의 비교검토)

  • Park, Chang-Hyun;Jang, Byung-Joon;Cho, Kang-Yong
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.33-39
    • /
    • 1995
  • To compare the quality of ultrastructural preservation of Scanning Electron Microscopic specimens dried with different methods; pure air-drying, air-drying with using Tetramethylsilane(TMS), four kind of air-drying using Hexamethyldisilazane(HMDS) and critical point drying(CPD), we conducted scanning electron microscopic observation on liver, skeletal muscle and intestinal tissues from laboratory rat treated with each method. In pure air drying group, severe distortion of tissue surface was observed, and in HMDS treated group, only liver tissue showed slight distortion. But in TMS treated group, each tissue showed a good presentation comparable to CPD group. The results suggest that the method of air-drying using TMS may be the former is less expensive and simple be and also time-saving.

  • PDF

Development of Drying System using NIR and Hot Air Method (근적외선 및 열풍방식을 이용한 건조시스템 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Baek, Jung-Woo;Jang, Mi-Geum;Moon, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.589-590
    • /
    • 2010
  • The drying method that is applied in industry is mainly used hot air drying method witch is circulated heated air by generating heat from thermal source. But these methods have problems such as decreasing drying efficiency and waste of energy by low thermal efficiency. Therefore, this paper proposes high efficiency hybrid drying system using near infrared ray(NIR) drying method using halogen lamp and hot air drying method. And this paper proves validity of proposed drying system through experiment about thermal and humidity of drying system inside.

  • PDF

Drying Characteristics of Oak Mushroom Using Conveyer Far Infrared Dryer - Down Draft Air Flow Type - (컨베이어 원적외선 건조기를 이용한 표고버섯의 건조특성 - 하향 송풍방식 -)

  • 연광석;김민호;한충수;조성찬;강태환;이해철;김창복;김진국
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • This study was conducted to develop a new drying method far reducing the drying cost and time and to investigate the drying characteristics of oak mushroom. A far infrared dryer of down draft air flow type used for this experiment can control the drying parameters, such as far infrared heater temperature and aeration velocity. The far infrared drying tests were performed at aeration velocities of 0.3 and 0.6m/s under the temperature of 90 and 100$^{\circ}C$ in for infrared heater, respectively. The results were compared and analyzed with those of an heated air drying method used as a control in terms of properties representing the drying characteristics. such as shrinkage rate, color, energy consumption amino acid components, drying rate and moisture ratio. The results obtained from this research can be summarized as follows. 1. The drying rate of far infrared drying was faster than that of heated air drying. With high temperature of far infrared heater and slow aeration velocity, the far infrared drying of down draft air flow type was superior to the heated air drying. 2. Most of far infrared drying conditions required less energy consumption than heated air drying. 3. The shrinkage rates of heated air drying and far infrared drying were decreased by 17.0% and 18.2∼19.8%, respectively. 4. The difference of color on oak mushroom surface before and after drying can be represented as $\Delta$E. $\Delta$E values of far infrared drying and heated air drying were 2.39∼4.55 and 6.77, respectively. 5. The amounts of free amino acids were higher in the far infrared than in the heated air drying. In addition the amounts of Gln and Glu generally were increased and those of Ala, Leu, and Val were decreased in order.

Far Infrared Rays Drying Characteristics of Tissue Cultured Mountain Ginseng Roots (산삼배양근의 원적외선 건조특성)

  • Li, H.;Kwang, T.H.;Ning, X.F.;Cho, S.C.;Han, C.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • This study was conducted to investigate the drying characteristics of tissue cultured mountain ginseng roots. The far infrared rays dryer of a double blast system used for this experiment can control the drying parameters such as far infrared heater temperature and air velocity. The far infrared rays drying tests of tissue cultured mountain ginseng roots were performed at air velocity of 0.4, 0.6, 0.8 m/s, under drying air temperature of 50, 60, and $70^{circ}C$, respectively. The results were compared with one obtained by the heated air drying method. The drying characteristics such as drying rate, color, energy consumption, saponin components and antioxidant activities were analyzed. The results showed that the drying rate of far infrared rays drying was faster than that of heated air drying and due to high temperature of drying air and fast air velocity, the far infrared rays drying of double blast type was superior to the heated air drying. The value of the color difference for heated air drying was 10.11${\sim}$12.99 and that of far infrared rays drying was in the range of 7.05${\sim}$7.54, which was in the same drying condition, also energy consumption of far infrared rays drying was in the range of 3575${\sim}$6898 kJ/kg-water. At the same time, the antioxidant activities using far infrared rays drying were higher than those using heated air drying.

Drying and Antioxidant Characteristics of the Shiitake (Lentinus edodes) Mushroom in a Conveyer Type Far-Infrared Dryer (컨베이어 원적외선 건조기를 이용한 표고버섯의 건조 및 항산화 특성)

  • Li, He;Choi, Young-Min;Lee, Jun-Soo;Park, Jong-Soo;Yeon, Kwang-Seok;Han, Chung-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.250-254
    • /
    • 2007
  • In an attempt to find ways of improving the quality of dried Shiitake mushroom, this study compared a conveyer-type far-infrared drying method with a traditional heated air drying method. The conveyer-type far-infrared dryer was performed at air velocity of 0.6 and 0.8 m/s under drying air temperature of 60, 70 and $80^{\circ}C$, respectively. Drying characteristics, antioxidant activities and the antioxidant compounds of Shiitake mushroom dried by far-infrared dryer were investigated. Generally, drying rate with the conveyer-type far-infrared drying method was faster than that with the traditional heated air drying method. In the conveyer type far infrared drying method, drying rates were increased with increasing temperature and air velocity. The loss of antioxidant activities during the conveyer-type far-infrared drying method at 60-0.6, 60-0.8, and $70^{\circ}C-0.6m/s$ was less than the traditional drying method. However, the loss of antioxidant activities at 70-0.8, 80-0.6, and $80^{\circ}C-0.8m/s$ was higher than that of the traditional drying method. Therefore, the conveyer type far infrared drying conditions with below $70^{\circ}C$ and 0.6 m/s air velocity may produce dried Shiitake mushroom with relatively higher antioxidant activities and antioxidant compounds.

Fan and Heater Management Schemes for Layer Filling and Mixing Drying of Rough Rice with Natural Air by Simulation (시뮬레이션에 의한 벼의 누적혼합 상온통풍건조의 송풍기 및 가열기의 운영방법에 관한 연구)

  • 금동혁;한충수;박춘우
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.229-244
    • /
    • 1998
  • This study was performed to determine proper fan and heater management schemes for natural air drying of rough rice in round steel bin with stirring device under Korean weather conditions. A computer simulation model was developed to predict moisture content changes, energy requirements, and drymatter losses during drying of rough rice by natural air. Drying test was conducted to validate the simulation model using round steel bin of holding capacity of 300ton at Rice Processing Complex in Jincheon. The bin was filled with rough rice every day and mixing by stirring device. Moisture contents, ambient air temperatures, relative humidities, static pressures in plenum chamber in the bin, airflow rates, and electrical and fuel energy were measured. Relative errors of moisture content changes predicted by the simulation model were below 5ft, and relative errors of final moisture content, final grain weight, required energy ranged from 0.9% to 6%. These not levels indicated that the simulation model can satisfactorily predict the performance factors of natural air drying system such as drying rates and energr consumptions comparing error level of 10% to 15% in other drying simulation models generally used in dryer desists. Twelve different fan and heater management schemes were evaluated using the computer simulation model based on three hourly weather data from Suweon for the period of 1952-1994. The best management schemes were selected comparing the drymatter losses, required drying times, required energy consumptions. Operating fan without heating only when ambient relative humidity was below 85% or 90% appeared to be the most effective method of In operation in favorable drying weather. Under adverse drying climates or to reduce required drying time, operating fan continuously, and heating air with $1.5^{\circ}C$ temperature rise only when ambient relative humidity was over 85% appeared to be the most suitable method.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

The Effects of Drying Method and Spice Extracts Added to Beef Jerky on the Quality Characteristics of Beef Jerky (건조방법과 향신료 추출물 첨가가 육포의 품질특성에 미치는 영향)

  • Park, Chu-Ja;Park, Chan-Sung
    • Korean journal of food and cookery science
    • /
    • v.23 no.6
    • /
    • pp.800-809
    • /
    • 2007
  • To develope Hanbang beef jerky as health food, six kinds of beef jerky were prepared by adding sugar (A), licorice (B) and three kinds of spice extracts (clove: C, fennel fruit: D and Chungyang green pepper extract: E) and mixture of all extracts (F). The effects of the drying method and added spice extracts on the quality characteristics of the beef jerky were evaluated. In general, the air-blast dried beef jerky contained $31{\sim}33%$ moisture, $50.0{\sim}51.2%$ crude protein, $7.2{\sim}7.8%$ crude lipid and $3.0{\sim}3.3%$ crude ash. For the mineral content of the air-blast dried jerky, the most prevalent mineral was Na $(1540.08{\sim}1838.17$ mg%), followed by K, P, Mg, and Ca. The Ca content of the beef jerky was highest in the mixed extract group (88.53 mg%), and the lowest content was in sugar-added group (53.12 mg%). For the color properties, the L-value (lightness), a-value (redness) and b-value (yellowness) were higher in the air-blast dried beef jerky than in the hot air dried samples. The drying methods showed their greatest affect on the redness (a) for all six jerkies (p<0.001). For the preference by sensory evaluation, the beef jerky samples with added sugar (A) and licorice extract (B) had significantly higher scores than the beef jerky samples with the added spice extracts, for both of air-blast drying and hot air drying (p<0.05). Preference for the air-blast dried beef jerkies with added clove (C) and fennel fruits (D) were significantly higher, in terms of taste, color, softness and aftertaste as compared to the respective hot air dried jerkies (p<0.01). Considering all the obtained results, we concluded that licorice and spice extracts can be used as natural preservatives in the development of health foods and the air-blast drying method is recommended to improve the quality characteristics of beef jerky.