• Title/Summary/Keyword: air-dry density

Search Result 92, Processing Time 0.03 seconds

Thiobacillus ferrooxidans 의 전기화학적 배양에 의한 셀밀도 증가

  • Jang, Yeong-Seon;Jeong, Seung-Ho;Lee, Gwang-Yeon;Park, Don-Hui;Jeong, Sang-Mun;Cha, Jin-Myeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.428-432
    • /
    • 2003
  • In this study, we demonstrated that high cell density for Thiobacillus ferrooxidans could be obtained when optimal conditions for cell growth were maintained using electrochemical cultivation with sufficient aeration. The optimal pH for cultivation were determined to be $2.0{\pm}0.05$. When the current and potential were set to 0.15A, 4V, the Pt electrode reduced $Fe^{3+}$ to $Fe^{2+}$ with efficiency of 85%. Under these condition, cells at an initial density of 0.0025 g-dry cell/L grew for 8days until the cell density was 0.0576 g-dry cell/L. this was a 7-fold increase over conventional batch culture.

  • PDF

Numerical Study on the Behavior of Snow Melting for the Analysis of Defrosting Procedure (제상과정 해석을 위한 눈의 융해거동에 관한 수치적 연구)

  • 이관수;박준상;김서영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.599-608
    • /
    • 2000
  • One dimensional numerical modeling was carried out for the melting behavior of dry snow and the unsaturated flow when heat was supplied from the bottom surface. Discrepancy between the previous experimental data and the present numerical results is substantially reduced by considering the density change of water permeation layer due to the infiltration of meltwater. In the parametric study for effective thermal conductivity, it was found that the effect of this parameter to the behavior of snow melting is minor. Sensitivity analysis showed that the melting time is most sensitive to changes in supplied heat flux, snow temperature, and bulk density, whereas snow bulk density and residual saturation have a significant effect on the height of water permeation layer in snow.

  • PDF

Predicting the Effective Thermal Conductivity of Some Sand-Water Mixtures Used for Backfilling Materials of Ground Heat Exchanger (지중열교환기 뒤채움재로 사용되는 모래-물 혼합물의 열전도도 예측)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.614-623
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of and(silica, quartzite, limestone, sandstone, granite and two masonry sands)-water mixtures used for ground heat exchanger backfilling materials. Nearly 260 tests were performed in a thermal conductivity measuring system to characterize the relationships between the thermal conductivity of mixtures and the water content. The experimental results show hat the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The most widely used empirical prediction models for thermal conductivity of soils were found inappropriate to estimate the thermal conductivity of unsaturated sand-water mixtures. An improved model using an exponential relationship to compute the thermal conductivity of dry sands and empirical relationship to assess the normalized thermal conductivity of unsaturated sand-water mixtures is presented.

Variation of Dielectric Constant of Sand due to Water Content and Measuring Frequency (수분함량과 측정주파수에 따른 사질토 지반의 유전상수 변화)

  • 이주형;오명학;박준범;김형석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.129-139
    • /
    • 2002
  • Dielectric constant measurement has drawn much attention in the investigation of the properties and contaminations of subsurface. In this study, by varying the frequency from 75 kHz to 12 MHz, dielectric constant was measured for the weathered granite soil and Jumunjin sand having different water contents and dry density. The dielectric constant of sand showed the dispersive behavior indicating that dielectric constant decreased with frequency of an electric field. And the dielectric constant of soil increased as water content and/or dry density increased due to the decrease of air portion and/or the increase of amount of water molecules which could contribute to the development of orientation polarization. The dielectric constant of sand showed a linear relationship with the moisture density, considering both water content and dry density. At low frequency, the dielectric constants calculated by Maxwell's, Topp's and CRIM equation deviated from measured values. It could be explained by the fact that those equations did not consider dispersive behavior of dielectric constant with the frequency.

The Development of Cylinder Shaped Air-breathing PEMFC (원통형 자연대류 방식 PEMFC 개발)

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Chu, Chong-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • Cylinder shaped air-breathing PEMFC has been developed to have small volume, low contact resistance and better air accessibility to the open cathode. This cylinder shaped design consists of an anode cylinder with helical flow channel and a cathode current collector with slits. The pressure distribution measurement according to the shapes was performed. The test result indicated that cylinder shaped fuel cell has better pressure distribution compared with the planar shaped fuel cell. The better pressure distribution was connected to the higher performance. The maximum power density of cylinder shaped fuel cell was about 20% higher than the planar shaped fuel cell. The maximum power density of the developed cylinder shaped air-breathing PEMFC with dry hydrogen was $220\;mW/cm^2$ and with humidified hydrogen was $293\;mW/cm^2$.

Studios on Drying and Preservation of Omija (Schizandra chinensis BAILL.) (오미자 건조와 저장에 관한 연구)

  • 정기태;주인옥;최정식
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.217-223
    • /
    • 1998
  • Quality and component of dry Omija during storage and shelf-life of fresh Omija were investigated. Acidity and pH of dry Omija were not significantly different among drying methods, but reducing sugar(3.77%) of field (drying was much lower than that of hot air drying(11.02%) and freeze drying(10.12%). Crude protein was higher in order of freeze drying> hot air drying> field drying, and the optical density of freeze drying at 520nm were higher up to about 3 times than field drying and hot air drying, respectively. Moisture content of dry Omija during the storage was increased, whereas acidity decreased at 25$^{\circ}C$. However changed little at 4, -5, -20$^{\circ}C$ Reducing sugar increased until 8 mouth, and thereafter decreased continuously. Optical density and color(L,a,b) decreased at 25$^{\circ}C$ but increased at 4, -5, -20$^{\circ}C$. Shelf-life of flesh Omija at 4$^{\circ}C$ was limited to 9 days because staring decay. Acidity and reducing sugar of flesh Omija continuously decreased during storage at -5, -60$^{\circ}C$. Optical density increased until 8 month and then decreased, and especially the optical density of 8 month storage at -60$^{\circ}C$ was higher than initial's.

  • PDF

Formaldehyde Emissions and Moisture Content Change of Wood Composites during Bake-out

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.101-109
    • /
    • 2012
  • Wood composites are a hygroscopic material and have ability to exchange its moisture content with air. This study investigated the formaldehyde emission and moisture content change of four wood composites (particleboard (PB), medium density fiberboard (MDF), high density fiberboard (HDF), laminated HDF (L-HDF)) as a function of bake-out temperature and time. The composites were baked out for 1, 3, 5, 7, 10, 14, 21, and 28 days at temperatures of $20{\pm}2$, $35{\pm}2$, and $50{\pm}2^{\circ}C$ in a dry oven. The moisture content change was used to determine the emission bake-out of the composites. Best bake-out time results were obtained with after 7 days all composites. Formaldehyde emission values of composites decreased with decreasing moisture content for both temperatures. The formaldehyde emission results of bake-out temperature 35 and $50^{\circ}C$ showed a similar tendency.

Investigation of acoustic monitoring on laser shock cleaning process (레이저 충격파 클리닝 공정에서 음향 모니터링에 관한 연구)

  • 김태훈;이종명;조성호;김도훈
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • A laser shock cleaning technology is a new dry cleaning methodology for the effective removal of small particles from the surface. This technique uses a plasma shock wave produced by a breakdown of air due to an intense laser pulse. In order to optimize the laser shock cleaning process, it needs to evaluate the cleaning performance quantitatively by using a monitoring technique. In this paper, an acoustic monitoring technique was attempted to investigate the laser shock cleaning process with an aim to optimize the cleaning process. A wide-band microphone with high sensitivity was utilized to detect acoustic signals during the cleaning process. It was found that the intensity of the shock wave was strongly dependent on the power density of laser beam and the gas species at the laser beam focus. As a power density was larger, the shock wave became stronger. It was also seen that the shock wave became stronger in the case of Ar gas compared with air and N$_2$ gas.

  • PDF

Physical Properties of Aramid and Aramid/Nylon Hybrid ATY for Protective Garments relative to ATY Nozzle Diameter (ATY 노즐 직경에 따른 방호의류용 아라미드와 아라미드/나일론 하이브리드 ATY사의 물성변화)

  • Choi, La Hee;Kim, Hyun Ah;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.437-443
    • /
    • 2013
  • This paper investigates the physical properties of aramid and aramid/nylon hybrid air jet textured filaments for protective garments relative to ATY nozzle diameters. Three types of para-aramids(840d, 1,000d, 1,500d) and nylon(420d) filaments were prepared; in addition, 840d aramid/420d nylon and three kinds of aramid filaments were texturized with a variation of air jet nozzle diameters(0.6, 0.75, 1 and 1.2 mm) on the AIKI air jet texturing machine. The measured physical properties of 16 specimens are as follows. The linear densities of aramid and aramid/nylon hybrid ATY increased with a larger nozzle diameter. The tenacity and initial modulus of aramid and hybrid ATY linearly decreased with a larger nozzle diameter; in addition, the breaking strain increased with the nozzle diameter. The dry and wet thermal shrinkage of hybrid ATY increased with a larger nozzle diameter from 0.6 mm to 1 mm and then decreased at a nozzle diameter of 1.2 mm (which seems to be a critical diameter). The wet and dry thermal shrinkage of aramid/nylon hybrid ATY are influenced by the nylon part of the hybrid yarns because the wet and dry thermal shrinkages of aramid ATY are less than 0.2%. The instabilities of aramid and aramid/nylon hybrid ATY were not influenced by the air jet nozzle diameter; however, they increased with the linear density of ATY.