• Title/Summary/Keyword: air-dry density

Search Result 92, Processing Time 0.021 seconds

Movement of Cold Water Mass in the Northern East China Sea in Summer (하계 동중국해 북부 해역에서 저층 냉수괴의 거동)

  • Jang, Sung-Tae;Lee, Jae-Hak;Kim, Cheol-Ho;Jang, Chan-Joo;Jang, Young-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The Yellow Sea Cold Water (YSCW) is formed by cold and dry wind in the previous winter, and is known to spread southward along the central trough of the Yellow Sea in summer. Water characteristics of the YSCW and its movement in the northern East China Sea (ECS) are investigated by analyzing CTD (conductivity-Temperature-Depth) data collected from summertime hydrographic surveys between 2003 and 2009. By water mass analysis, we newly define the North Western Cold Water (NWCW) as a cold water mass observed in the study area. It is characterized by temperature below $13.2^{\circ}C$, salinity of 32.6~33.7 psu, and density (${\sigma}_t$) of 24.7~25.5. The NWCW appears to flow southward at about a speed less than 2 cm/s according to the geostrophic calculation. The newly defined NWCW shows an interannual variation in the range of temperature and occupied area, which is in close relation with the sea surface temperature (SST) over the Yellow Sea and the East China Sea in the previous winter season. The winter SST is determined by winter air temperature, which shows a high correlation with the winter-mean Arctic Oscillation (AO) index. The negative winter-mean AO causes the low winter SST over the Yellow Sea and the East China Sea, resulting in the summertime expansion and lower temperature of the NWCW in the study area. This study shows a dynamic relation among the winter-mean AO index, SST, and NWCW, which helps to predict the movement of NWCW in the northern ECS in summer.

Eco-friendly Control of Whiteflies by Two-Fluid Fogging System with Natural Substances in Greenhouses (이류체 포그시스템 및 천연물을 이용한 친환경적 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Lee, Moon-Haeng;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.114-119
    • /
    • 2012
  • We have conducted 4 experiments to develop the most environmental and effective use of the two-fluid fog system to prevent and exterminate whiteflies in tomato cultivation. In particular, these experiments used Vitamini tomatoes grown in stand-alone greenhouses at Buyeo Tomato Experiment Station as subjects. Each experiment utilized the fog system in a different way. The first experiment provided the control group, which was subject to the two-fluid fog system without additional humidity control. In the second experiment, the two-fluid fog system controlled the humidity level to be above 70%. The third and the fourth experiment utilized natural substances, which were 1.5 mg/L of Neem Oil and 2 mg/L of Oleic acid respectively, without additional humidity control. From the first experiment, we could observe that a simple use of the two-fluid fog system decreased the density of whiteflies in the greenhouses. This impact of the fog system on whiteflies was greater in the second experiment. By comparing the first and the second experiment, we concluded that whiteflies are more effectively prevented by maintaining a higher humidity level via the fog system's smaller water droplets that float in the air for longer time than the standard fog system in rather dry condition. In the third and the fourth experiments, the extermination level was 78% and 76.4% respectively, comparing only 53% in the first experiment without the humidity control. Therefore, using the natural substances in addition to the humidity control increases the extermination effectiveness. Considering the similar results from the 3rd and the 4th experiments, Oleic acid has a greater appeal for its lower price. Using the two-fluid fog system to both control the humidity on a daily basis and spray the substances for occasional extermination would reduce labor cost and increase production in an environmental way.