• Title/Summary/Keyword: air-cored

Search Result 55, Processing Time 0.025 seconds

A Study on the Estimation for the Guaranteed Strength and Construction Quality of the Combined High Flowing Concrete in Slurry Wall (지하연속벽용 병용계 고유동 콘크리트의 시공 품질 및 보증강도 평가에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.811-817
    • /
    • 2006
  • The primary purpose of this study is to estimate the guaranteed strength and construction quality of the combined high flowing concrete which is used in the slurry wall of underground LNG storage tank. The required compressive strength of this type of concrete become generally known as a non economical value because it is applied the high addition factor for variation coefficients and low reduction factor under water concrete. Therefore, after estimation of the construction quality and guaranteed strength in actual site work, this study is to propose a suitable equation to calculate the required compressive strength in order to improve its difference. Application results in actual site work are shown as followings. The optimum nix design proportion is selected that has water-cement ratio 51%, sand-aggregate ratio 48.8%, and replacement ratio 42.6% of lime stone powder by cement weight. Test results of slump flow as construction quality give average 616~634mm. 500mm flowing time and air content are satisfied with specifications in the rage of 6.3 seconds and 4.0% respectively. Results of strength test by standard curing mold show that average compressive strength is 49.9MPa, standard deviation and variation coefficients are low as 1.66MPa and 3.36%. Also test results by cored cylinder show that average compressive strength is 66.4MPa, standard deviation and variation coefficients are low as 3.64MPa and 5.48%. The guaranteed strength ratio between standard curing mold and cored cylinder show 1.23 and 1.32 in the flanks. It is shown that applied addition factor for variation coefficients and reduction factor under water concrete to calculate the required compressive strength is proved very conservative. Therefore, based on these results, it is proposed new equation having variation coefficients 7%, addition factor 1.13 and reduction factor 0.98 under water connote.

Relationship between Unconfined Compressive Strength and Shear Wave Velocity of Cemented Sands (고결모래의 일축압축강도와 전단파속도의 상관관계)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2014
  • Cemented soils have been widely used in road and dam construction, and recently ground improvement of soft soils. The strength of such cemented soils can be tested by using cored sample or laboratory-prepared specimen through unconfined compression or triaxial tests. It takes time to core a sample or prepare a testing specimen in the laboratory. In a certain situation, it is necessary to determine the in-situ strength of cemented soils very quickly and on time. In this study, the relation between unconfined compressive strength and shear wave velocity was investigated for predicting the in-situ strength of cemented soils. A small cemented specimen with 5 cm in diameter and 10 cm in height was prepared by Nakdong river sand and ordinary Portland cement. Its cement ratios were 4, 8, 12, and 16% and air cured for 7, 14, and 28 days. For recycling of resources, a blast furnace slag was also used with sodium hydroxide as an alkaline activator. The shear wave velocity for cemented soils was measured and then unconfined compressive strength test was carried out. As a cement ratio increased, the shear wave velocity and unconfined compressive strength increased due to increased density and denser structure. The relation between unconfined compressive strength and shear wave velocity increased nonlinearly for cemented soils with less than 16% of cement ratio.

Study on a Propulsion Control of the Roller Coasters Train based on Air Cored Linear Synchronous Motor (공심형 선형동기전동기 기반의 궤도열차 추진제어에 관한 연구)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8187-8194
    • /
    • 2015
  • To accelerate a heavy roller coaster train with over 1G force, a lot of thrust is required and linear synchronous motor(LSM) as propulsion method is suitable for this kind of system. To increase the propulsion efficiency of LSM, precise and real-time position information of vehicle is required for accurate phase control. However, the discontinuous position information with relatively long time interval is usually transmitted from the hall-sensors on the track every magnet length. In this paper, the basic motor model based on traditional dq-axis equations is described and the motor dynamic model is produced by considering the cogging force and friction loss. To improve the position accuracy, the position estimator is also proposed for LSM control system. Simulations were performed to check the characteristics of the torque control system which includes the position estimator based on the motor model. Simulation results based on the linearized model show that this control system has an enough bandwidth and phase margin and the executed algorithm achieves an ideal effect to follow the real-time position signal. Therefore, the feasibility of position estimator is also confirmed.

Evaluation for Applicability of Reinforced Concrete Structure with Domestic Pond Ash (국산 매립회 골재를 사용한 콘크리트 구조물의 적용성 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Chae, Sung-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.541-550
    • /
    • 2011
  • Many researches have been performed on concrete with fly ash and bottom ash. However researches on concrete with pond ash (PA) and its application to RC (Reinforced Concrete) structure are limitedly carried out. This paper presents an applicability of PA concrete in construction of real size structure. Referring to the previous study, 2 domestic PA samples with normal performance are selected and 2 replacement ratios (25% and 50%) to fine aggregate are considered for 5 PA concrete structures consisting of column, slab, and wall. In order to evaluate the property of fresh concrete, several tests including air content, slump, and setting time are performed. Using cored out samples from hardened PA concrete structure, tests for strength, resistance to carbonation and chloride penetration are carried out and compared with control samples. Additionally, tests for rebound hardness, drying shrinkage, and hydration heat are performed for PA concrete structure. The test results showed that PA concrete has reasonable strength and durability performances compared to those of normal concrete. Therefore, its potential application to RC structure is promising. The PA aggregate can be more actively used for RC structures with better quality control for content of fly ash, bottom ash, and unburned carbon.

Performance of Constructed Facilities: Pavement Structural Evaluation of William P Hobby Airport in Houston, Texas

  • Kim, Sung-Hee;Jeong, Jin-Hoon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The results of a recent case study for material characterizations and structural evaluation to design asphalt overlay thickness of William P Hobby airport in Houston, Texas are presented herein. The existing runway 12R-30L of Hobby airport consisted of thick asphalt overlay over Portland Cement Concrete (PCC) and the localized surface shoving as evident in the closure of surface groove has been observed recently. Using the field cored asphalt concrete mixtures, measurements of percent air voids, asphalt content and aggregate gradation were conducted to find out the causations of surface shoving and groove closure. The FAA layered elastic program, LEDFAA was utilized to evaluate pavement structural conditions for new asphalt overlay. Two different composition assumptions for existing pavement were made to evaluate the pavement as followings: 1) APC, Asphalt Concrete Overlay over PCC pavement and 2) AC, Asphalt Concrete pavement. Based on laboratory testing results, a ratio of percent passing #200 to asphalt content ranged 1.1 to 2.2, which is considered a high ratio and a tendency of tender mix design was observed. Thus, the localized surface shoving and groove closure of the runway 12R-30L could be attributed to the use of excessive fine contents and tender mix design. Based on the structural evaluation results, it was ascertained that the analysis assuming the pavement structure as AC pavement gives more realistic structural life when the asphalt overlay is thicker enough compared to PCC layer because the existing PCC pavement under asphalt overlay acts more like a high quality base material.