• Title/Summary/Keyword: air transformation

Search Result 238, Processing Time 0.027 seconds

Analysis Techniques of Corona Discharges in Air with Needle-Plane Electrode System (침-평판 전극 구조에서 발생하는 기중 코로나 방전의 해석 기법)

  • 강성화;박영국;권순석;정수현;류부형;임기조
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.49-53
    • /
    • 1996
  • Corona discharges in air insulated electric power systems cause power loss, produce interfering electromagnetic radiation, and can indicate incipient failure. An understanding of corona discharges in air gap is clearly Important. The Wavelet transformation is an extended method of fourier transformation. The fourier method is a powerful tool for signal analysis, but it can't include information for time. However the wavelet transformation analysis can include on the information of time and frequencies at the same time. In this paper we apply the wavelet transformation to the corona signals in needle-plane air gap for the purpose of analysis of developing aspects of corona discharges. We analyzed the developing aspects of corona discharges, namely, corona discharge current, repetition rates, width of Pulse distribution region, pulseless region and frequencies distribution of corona discharge pulses.

  • PDF

Wavelet Analysis of Partial Discharges in Needle-Plane Air Gap (침-평판 전극 구조에서 기중 부분방전의 Wavelet 해석)

  • Kang, S.H.;Park, Y.G.;Lee, D.J.;Shin, D.W.;Lim, K.J.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1523-1525
    • /
    • 1996
  • Partial discharges(PD) in air insulated electric power systems cause power loss, produce interfering electromagnetic radiation, and can indicate incipient failure. An understanding of PD in air gap is clearly important. The Wavelet transformation is an extended method of fourier transformation. The fourier method is a powerful tool for signal analysis, but it can't include informations for time. However tile wavelet transformation analysis can include on the informations of time and frequency at the same time. In this paper we apply the wavelet transformation to the PD signals in needle-plane air gap for tile purpose of analysis of developing aspects of PD. We can analyze the developing aspects of PD, namely, PD current, repetition rates, width of pulse distribution region, pulseless region and frequencies distribution of PD pulses.

  • PDF

Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel (0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF

Nonlinear Wave Transformation and Air Pressure Variation of Air-Chamber Structure (압축공기주입 구조물에 의한 비선형 파랑변형 및 공기압의 변화에 관한 연구)

  • Kim, Do-Sam;;Yang, Yun-Mo
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.71-79
    • /
    • 1993
  • Nonlinear characteristics of air pressure variation and wave transformation of a fixed air-chamber structure are discussed theoretically and experimentally. Two analytical methods(method I and II) based on the perturbation method and Green's formula are employed in order to evaluate nonlinearities by the submerged and semi-submerged air-chamber structure. Moreover, an air compression model is newly developed to estimate the dynamic air pressure in the air-chamber inside the structure, assuming the Boyle-Charles's law with adiabatic process in the air pressure variation. Theoretical values of the method I considering evanescent mode waves at an fictious boundary, are in good agreement with those of method II employing the fictious boundary which is not affected by evanescent mode waves. Both theoretical values are shown to agree well with experimental values.

  • PDF

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF

A Simple Sensorless Scheme for Induction Motor Drives Fed by a Matrix Converter Using Constant Air-Gap Flux and PQR Transformation

  • Lee, Kyo-Beum;Blaabjerg, Frede
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.652-662
    • /
    • 2007
  • This paper presents a new and simple method for sensorless operation of matrix converter drives using a constant air-gap flux and the imaginary power flowing to the motor. To improve low-speed sensorless performance, the non-linearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching devices, and on-state switching device voltage drop are modeled using PQR transformation and compensated using a reference current control scheme. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system. Experimental results are shown to illustrate the feasibility of the proposed strategy.

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim;Park, Il Han;Moon, Kyung Hwan;Kim, Dong Hwan;Jung, Seung Il;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.618-624
    • /
    • 2018
  • We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Measurement of Perturbed Pressures under Inherently Compensated Restrictors in Externally Pressurized Air Bearings (자성형 급기공을 갖는 외부가압 공기베어링의 섭동압력측정에 관한 연구)

  • 박상신;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • In this study, steady state and perturbed pressures are experimentally measured under inherently compensated restrictors in externally pressurized air bearings. A piezo actuator is used for simulating small displacement perturbation in the air film. The pressures under the restrictors are measured by a miniature type pressure transducer and the height of the air film is measured by capacitance type gap sensors developed by Chapman's method. The perturbed pressure is obtained through Fourier transformation of the two signals. The measured perturbed pressures are in good agreement with the calculated values.