• Title/Summary/Keyword: air quality monitoring system

Search Result 163, Processing Time 0.376 seconds

Visible Light Communication Based Wide Range Indoor Fine Particulate Matter Monitoring System (가시광통신 기반 광역 실내 초미세먼지 모니터링 시스템)

  • Shakil, Sejan Mohammad Abrar;An, Jinyoung;Han, Daehyun;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Fine particulate matter known as PM 2.5 refers to the atmospheric particulate matter that has a diameter less than 2.5 micrometer identified as dangerous element for human health and its concentration can provide us a clear picture about air dust concentration. Humans stay indoor almost 90% of their life time and also there is no official indoor dust concentration data, so our study is focused on measuring the indoor air quality. Indoor dust data monitoring is very important in hospital environments beside that other places can also be considered for monitoring like classrooms, cements factories, computer server rooms, petrochemical storage etc. In this paper, visible light communication system is proposed by Manchester encoding technique for electromagnetic interference (EMI)-free indoor dust monitoring. Important indoor environment information like dust concentration is transferred by visible light channel in wide range. An average voltage-tracking technique is utilized for robust light detection to eliminate ambient light and low-frequency noise. The incoming light is recognized by a photo diode and are simultaneously processed by a receiver micro-controller. We can monitor indoor air quality in real-time and can take necessary action according to the result.

Analysis of Variation Characteristics of Greenhouse Gases in the Background Atmosphere Measured at Gosan, Jeju (한반도 배경대기 중 온실기체의 농도 변동 특성 분석)

  • Ju, Ok-Jung;Cha, Jun-Seok;Lee, Dong-Won;Kim, Young-Mi;Lee, Jung-Young;Park, Il-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 2007
  • Increase of the greenhouse gases emissions during last century has led remarkable changes in our environment and climate system. Continuous monitoring of atmospheric constituents over the world is positively necessary to understand these changes around us. The concentrations of greenhouse gases ($CO_2,\;CH_4,\;N_2O,\;CFCs$) have been continuously measured at Global Climate Change Monitoring station in Gosan, Jeju since January, 2002. In this study, the variation characteristics of greenhouse gases as well as their annual, seasonal and diurnal trend using the data from January, 2002 to December, 2005 were analyzed. The raw data which was used in the analysis were validated with the methods recommended by WDCGG (World Data Center for Greenhouse Gases). The concentration of $CO_2$ was increasing continuously by 2.1 ppm/year, while $CH_4$ did not show any increasing or decreasing trend clearly for 4 years. The concentration of $N_2O$ was slightly increasing and CFCs were decreasing except CFC-12 which has longer lifetime compared with other CFCs. The variations of the greenhouse gases at Gosan were shown to be consistent with the global trend. But the concentration level of $CO_2$ in Korea was more or less higher than abroad.

A Study on the Analysis of $CO_2$ Concentration Variation According to the Indoor Space Condition Changes (다양한 실내 환경에서의 $CO_2$ 농도 변화 분석 연구)

  • Ahn, Gwang-Hoon;Kwon, Jong-Won;Kim, Gyu-Sik;Kim, Hie-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.347-349
    • /
    • 2009
  • Air quality of indoor space environment is affected by various pollutants like as particles and chemical stuffs. The indoor air pollution affects directly the human respiration organs to cause consequently unpleasant mental status. The $CO_2$ concentration level is one of the harmful components of air pollutants. Major factor to increase the $CO_2$ concentration level is the people's breath amount in indoor. The car exhaust gas diffused from the around road also has strong affect on $CO_2$ concentration. There are some other reasons to affect the $CO_2$ concentration change, such as, real-time change of the population movement, closeness to the indoor air flow inlet window and changes in road car traffic amount. A remote monitoring system to measure environmental indoor air pollution concerning on the $CO_2$ concentration was studied and installed realized set-up model. Zigbee network configuration was applied for this system and the $CO_2$ concentration data were collected through USN network. A software program was developed to assure systematic analysis and to display real-time data on web pages. For the experimental test various condition was set up, like as, window opening, stopping air condition operation and adjusting fan heater work, etc. The analysis result showed the relation of various environmental conditions to $CO_2$ concentration changes. The causes to increase $CO_2$ concentration were experimentally defined as windows closing, the stopping air condition system, fan heater operation. To keep the $CO_2$ concentration under the legally required ppm level in public access indoor space, the developed remote measurement system will be usefully applied.

  • PDF

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

A Proposal for the Upgrade of the Current Operating System of the Seoul's Atmospheric Monitoring Network Based on Statistical Analysis (서울시 대기 측정소간 상관관계를 감안한 측정소의 운용 방향 개선을 위한 제언)

  • Bae, Min Suk;Jung, Chang Hoon;Ghim, Young Sung;Kim, Ki Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.447-458
    • /
    • 2013
  • The present operating system for the atmospheric monitoring network in the city of Seoul, Korea, has been established since the late 90s by the Korean Ministry of Environment (KMOE). In this research, it was evaluated by the multi-statistical approaches through combinations of time series analysis, correlation matrix, and multiple cluster analysis. Finally, road traffic including resuspended materials can be one of the main sources of particulate matter in the atmosphere. Based on its importance, it will be significant challenges in quantitative evaluation of its contribution to airborne concentrations. The future directions for their amendments such as a new management plan for the source of road dust (including car emissions) were devised and proposed based on the statistical judgements derived in this research.

A Study of Environment Monitoring System based on USN (유비쿼터스 센서 네트워크 기반 환경 모니터링 시스템에 관한 연구)

  • Kim, Ki-Tae;Choi, Sam-Gil;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.467-470
    • /
    • 2010
  • USN(Ubiquitous Sensor Network) is the network that widely applies for life of human being. It works out to sense, storage, process, deliver every kind of appliances and environmental information from the stucktags and sensors. And it is possible to utilize to measure and monitor about the place of environmental pollution which is difficult for human to install. It's studied constantly since it be able to compose easily more subminiature, low-power, low-cost than previous one. And also it spotlights an important field of study, graft the green IT and IT of which the environment and IT unite stragically onto the Network. This study realize a IAQM(Indoor Air Quality Management) sensing mechanism composition under the network and suggest the application of Environment monitoring system outlook to measure an Environment element.

  • PDF

Application of a Gas Chromatography/Luminol Detection System for Peroxyacetyl Nitrate Airborne Measurement

  • Khang, Bumju;Ahn, Joon Young;Song, Dasol;Lee, Gangwoong
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • We constructed and tested an airborne peroxyacetyl nitrate (PAN) monitoring system based on luminol chemiluminescence detection with fast gas chromatography. This system allowed for simultaneous measurement of PAN and nitrogen dioxide ($NO_2$) with a time resolution of <2 min. Actual sample masses within the fixed volume sample loop at various altitudes and temperatures were adjusted to standard atmosphere, using measured pressures and temperatures. The airborne PAN measurement system was evaluated during two field studies above the southern Korean Peninsula in August and October 2009. The detection limit based on the ISO approach was 0.035 ppbv PAN, well below the observed concentrations of 0.185-1.49 ppbv during these studies. Under these conditions, the PAN mixing ratios were positively correlated with $O_x$ ($O_x=O_3+NO_2$), with slopes varying between 0.014 and 0.033 and intercepts between 22.6 and 55.1 ppbv $O_x$. The intercepts corresponded roughly to background $O_x$ mixing ratios in central Europe; however, the slopes were above the range of slopes reported in other studies. We also enhanced the durability, safety, and ease of maintenance of the PAN monitoring system by redesigning the structure of the conventional luminol cell.

A Study on Water Quality Standard for the Protection of Human Health and Aquatic Life (인체의 위해성과 수생태계를 고려한 수질환경기준 설정에 관한 연구)

  • Lee, Jae-Hyun;Kim, Yoon-Shin
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.985-992
    • /
    • 2007
  • There are about 40,000 chemicals used in Korea and 300 new types of chemicals are added to the list every year, influencing quality of air, soil and water. Water quality standards that serve as the basis for water quality management have been proved inefficient and insufficient compared to those of advanced countries. This study aims to improve the existing water quality standards. Most importantly, the water quality standards need to take into account not only protection of human health but also aquatic resources. To that end, water quality criteria need to be set by monitoring each watershed every year and conducting risk assessment. Criteria for human health are set at $10^{-6}$ cancer risk level, and for aquatic life at conservative level, adopting the methodology of the U.S. and Australia, respectively. After carrying out technical and economic feasibility studies, more conservative criteria will be used to decide final water quality standards. The development of this system to establish integrated water quality standards for both human health and aquatic resources protection is urgently needed.

The Abnormal Condition Monitoring of Rotary Compressor using Acoustic Emission (AE 신호를 이용한 회전형 압축기의 이상상태 감시)

  • Lee Kam-Gyu;Jung Ji-Hong;Kim Jeon-Ha;Kang Myung-Chang;Kim Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.118-123
    • /
    • 2004
  • The compressor has one of important roles in refrigeration cycle and it determines refrigeration efficiency and quality This paper aims to monitor rotary compressors for room air conditioners by using Acoustic Emission(AE) technique. The reliability of rotary compressors has been evaluated through visual inspection on them after long term test. This paper describes methods for acquisition and processing AE raw signal to monitor the state of rotary compressor. A detecting method of abnormal compressor in real time is suggested and special-purpose monitoring system which can be applied to automatic manufacturing line is developed using one-chip microprocessor at low cost.

Estimation of Secondary PM10 Concentrations and Their Diurnal Variations Using Air Quality Monitoring Data in Seoul (지상 대기질 측정 자료를 이용한 서울 지역 2차 미세먼지 생성량 및 그 일변화 추정)

  • Kim, Ji-A;Jin, Hyung-Ah;Kim, Cheol-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.393-403
    • /
    • 2008
  • In an effort to estimate secondary $PM_{10}$ concentrations and their diurnal variations at different photochemical activities, $PM_{10}$, CO, and $O_3$ concentrations obtained from the ambient air quality network located in Seoul are analyzed for the period from 2000 to 2005. In order to classify the photochemical activities on a daily basis, measured ${\Delta}O_{3,\;max-min}$ (maximum $O_3$-minimum $O_3$) and ${\int}(hv)dt$ which represents accumulated daily insolation, were used to classify each day into three regimes: 1) low photochemical reactivity; ${\Delta}O_{3,\;max-min}\;{\leq}\;40\;ppb$, and ${\int}(hv)dt\;{\leq}\;4000\;W/m^2$, 2) moderate photochemical reactivity; $40\;ppb\;<\;{\Delta}O_{3,\;max-min}\;{\leq}\;60\;ppb$, and $4000\;{\leq}\;{\int}(hv)de\;{\leq}\;6000\;W/m^2$, and 3) high photochemical reactivity; ${\Delta}O_{3,\;max-min}\;>\;60\;ppb$, and ${\int}(hv)dt\;{\geq}\;6000\;W/m^2$. The ratio of ($PM_{10}$/CO) obtained at low photochemical activity regime was used as an index of tracer for the estimation of secondary $PM_{10}$ at higher photochemical activity regimes. The results show that the estimated secondary $PM_{10}$ concentrations for moderate and high photochemical regimes are found to be 18.8% ($10.9\;{\mu}g/m^3$), and 35.0% ($26.2\;{\mu}g/m^3$), respectively. Diurnal variation of secondary $PM_{10}$ for the moderate photochemical regime shows weak but noticeable patterns. However, the highly activated photochemical regime shows strong diurnal variations of secondary $PM_{10}$ concentrations with the maximum value of $35.1\;{\mu}g/m^3$ at 1300LST.