• Title/Summary/Keyword: air quality monitoring station

Search Result 73, Processing Time 0.024 seconds

Assessment of location of the air quality monitoring stations according to the analysis of wind sector division in Pohang (포항지역의 바람권역 분석에 따른 대기측정망 위치 평가)

  • Jung, Jong-Hyeon;Lee, Hyung-Don;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1931-1938
    • /
    • 2012
  • This study evaluated whether the installed location of air quality monitoring stations is at an optimal level in an effort to improve the health and environmental quality of the surrounding areas of the Pohang Steel Complex. As a result of analyzing the atmospheric flow field, it was found that the location of air quality monitoring stations was acceptable in case of Daesong-myeon(The 1st Division of Local Wind Sector) and Jukdo-dong(The 3rd Division of Local Wind Sector). However, the air quality monitoring stations installed at Daedo-dong and Jukdo-dong is judged to have made an overlapped measurement because the stations existed at the Division of the same Wind Sector. Accordingly, this study suggests that the further air quality monitoring stations should be additionally installed at Buk-gu areas of Pohang where more than 50% of the population of Pohang is living presently. As a result of the analysis of air contaminant concentration distribution, the Jangheung-dong area showed higher concentration distribution than other areas in case of $PM_{10}$ while the Daesong-myeon area showed a comparatively higher concentration distribution in case of $O_3$. Conclusively, this study indicates that it is high time to prepare an aggressive management of $PM_{10}$ and $O_3$ which causes a harmful impact on the life and health of the residents of the target areas.

Spatio-temporal estimation of air quality parameters using linear genetic programming

  • Tikhe, Shruti S.;Khare, K.C.;Londhe, S.N.
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.83-94
    • /
    • 2017
  • Air quality planning and management requires accurate and consistent records of the air quality parameters. Limited number of monitoring stations and inconsistent measurements of the air quality parameters is a very serious problem in many parts of India. It becomes difficult for the authorities to plan proactive measures with such a limited data. Estimation models can be developed using soft computing techniques considering the physics behind pollution dispersion as they can work very well with limited data. They are more realistic and can present the complete picture about the air quality. In the present case study spatio-temporal models using Linear Genetic Programming (LGP) have been developed for estimation of air quality parameters. The air quality data from four monitoring stations of an Indian city has been used and LGP models have been developed to estimate pollutant concentration of the fifth station. Three types of models are developed. In the first type, models are developed considering only the pollutant concentrations at the neighboring stations without considering the effect of distance between the stations as well the significance of the prevailing wind direction. Second type of models are distance based models based on the hypothesis that there will be atmospheric interactions between the two stations under consideration and the effect increases with decrease in the distance between the two. In third type the effect of the prevailing wind direction is also considered in choosing the input stations in wind and distance based models. Models are evaluated using Band Error and it was observed that majority of the errors are in +/-1 band.

Machine Learning-based Estimation of the Concentration of Fine Particulate Matter Using Domain Adaptation Method (Domain Adaptation 방법을 이용한 기계학습 기반의 미세먼지 농도 예측)

  • Kang, Tae-Cheon;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1208-1215
    • /
    • 2017
  • Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Fredy Alejandro, Guevara Luna;Marco Andres, Guevara Luna;Nestor Yezid, Rojas Roa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.232-243
    • /
    • 2018
  • The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus $Bogot{\acute{a}}$, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student's activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak$^{(R)}$ Air & OPC air monitoring station with the capability to measure particulate matter $PM_{10}$, $PM_{2.5}$, Ozone ($O_3$), Sulfur Oxide ($SO_2$), Carbon Monoxide (CO) and Nitrogen Oxide ($NO_2$) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus$^{(R)}$ 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS$^{(R)}$ 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the $L_{Aeq}$ noise level and around 80% to 90% for air pollution were detected during the operation period.

Air Quality Deterioration in a Pristine Area due to a Petroleum Refinery and Associated Activities

  • Handique, Devolakshi;Bhattacharyya, Krishna G.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.254-269
    • /
    • 2017
  • The work describes an assessment of the major air pollutants, $NO_2$, $SO_2$, CO, $O_3$, $NH_3$, coarse and fine particulate matter ($PM_{10}$, $PM_{2.5}$) in ambient air in and around a 3 million tonne Petroleum Refinery and the possible impacts on a pristine area marked by the presence of the world-famous Kajiranga National Park, a world heritage site and habitat for the most number of one-horned rhinos in the world. The Refinery is at an aerial distance of 20-25 km from the wildlife habitat. The assessment is based on regular monitoring at four stations around the Refinery and one station near the National Park. Heavy rains during June to August influence the pollutant concentrations while at other times of the year, large traffic volume adds to the pollutant concentrations that peak during November to March, the dry months of the year. Correlation analysis by scatter technique is utilised to obtain the enhancement ratios to predict the variations in the concentrations of the pollutants and their spatial distribution. Computation of air quality index (AQI) indicates that the coarse and the fine particulates in the ambient air could be a major hazard to wildlife in the area.

Analysis of Variation Characteristics of Greenhouse Gases in the Background Atmosphere Measured at Gosan, Jeju (한반도 배경대기 중 온실기체의 농도 변동 특성 분석)

  • Ju, Ok-Jung;Cha, Jun-Seok;Lee, Dong-Won;Kim, Young-Mi;Lee, Jung-Young;Park, Il-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 2007
  • Increase of the greenhouse gases emissions during last century has led remarkable changes in our environment and climate system. Continuous monitoring of atmospheric constituents over the world is positively necessary to understand these changes around us. The concentrations of greenhouse gases ($CO_2,\;CH_4,\;N_2O,\;CFCs$) have been continuously measured at Global Climate Change Monitoring station in Gosan, Jeju since January, 2002. In this study, the variation characteristics of greenhouse gases as well as their annual, seasonal and diurnal trend using the data from January, 2002 to December, 2005 were analyzed. The raw data which was used in the analysis were validated with the methods recommended by WDCGG (World Data Center for Greenhouse Gases). The concentration of $CO_2$ was increasing continuously by 2.1 ppm/year, while $CH_4$ did not show any increasing or decreasing trend clearly for 4 years. The concentration of $N_2O$ was slightly increasing and CFCs were decreasing except CFC-12 which has longer lifetime compared with other CFCs. The variations of the greenhouse gases at Gosan were shown to be consistent with the global trend. But the concentration level of $CO_2$ in Korea was more or less higher than abroad.

The Fine Dust Reduction Effect and Operational Strategy of Vegetation Biofilters Based on Subway Station Passenger Volume (지하역사 내 승하차 인원에 따른 식생바이오필터의 미세먼지 저감효과와 운전전략)

  • Jae Young Lee;Ye Jin Kim;Mi Ju Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.13-18
    • /
    • 2023
  • A subway station is a prominent multi-purpose facility where the quantitative management of fine dust, generated by various factors, is conducted. Recently, eco-friendly air purification methods using air-purifying plants are being discussed, with the focus on biofiltration through vegetation. Previous research in this field has confirmed the reduction effects of transition metals such as Fe, which have been identified as harmful to human health. This study aimed to identify the sources of fine dust dispersion within subway stations and derive an efficient operational strategy for air-purifying plants that takes into account the behavior characteristics of fine dust within multi-purpose facilities. The experiment monitored regional fine dust levels through IAQ stations established based on prior research. Also, the data was analyzed through time-series and correlation analyses by linking it with passenger counts at subway stations and the frequency of train stops. Furthermore, to consider energy efficiency, we conducted component-specific power consumption monitoring. Through this study, we were able to derive the optimal operational strategy for air-purifying plants based on time-series comprehensive analysis data and confirm significant energy efficiency.

  • PDF

The Kwinana Shoreline Fumigation Experiment in Western Australia, Australia

  • Yoon, I.H.;Sawford, B.L;Manins, P.C.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1996.04a
    • /
    • pp.22-22
    • /
    • 1996
  • ;The Kwinana Shoreline Fumigation Experiment(KSFE) took place in Fremantle, WA, Australia between 23 January and 8 February, 1995. All measurement systems performed to expectation. The CSIRO DAR(Division of Atmospheric Research) LIDAR measured plume sections from near the Kwinana Power Station(KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. Radiosonde and double theodolite sounding systems measured temperature, humidity, air pressure and wind structure at the coast(Woodman Point) and at the inland(ALCOA residue dump) site at intervals of roughly two hours. These were supplemented by mid afternoon soundings(radiosonde and single theodolite) by Department of Environmental Protection(DEP) at Swanbourne. The Flinders aircraft measured wind, turbulence and temperature structure of the atmospheric boundary layer, concentrations of $C0_2,\;0_3,\;S0_2\;and\;NO_x$ in the smoke plumes and surface radiation over both land and sea. CSIRO DCET(Division of Coal and Energy Technology) vehicle successfully interceptde many smoke plumes and using a range of tracers will be able to identify the various sources much of the time. Routine data from the DEP and Kwinana Industrial Council(KIC) air quality monitoring networks were also automatically logged. Murdoch University measured surface heat flux at Hope Valldy monitoring station and also at Wattleup monitoring station for the last five days. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminumgarnet(Nd:Y AG) laser operating at a fundamental wavelength of 1064 nm, with harmonics fo 532 nm and 355 nm. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detedted by a photomultiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The results of nine days special field observations are summarized in detail.etail.

  • PDF

The Long Term Trends of Tropospheric Ozone in Major Regions in Korea

  • Shin, Hye Jung;Park, Ji Hoon;Park, Jong Sung;Song, In Ho;Park, Seung Myung;Roh, Soon A;Son, Jung Seok;Hong, You Deog
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.235-253
    • /
    • 2017
  • This study was conducted for analyzing the contribution factors on ozone concentrations and its long term trends in each major city and province in Korea through several statistical methods such as simple linear regression, generalized linear model, KZ-filer, correlation matrix, Kringing method, and cluster analysis. The overall ozone levels in South Korea have been consistently increasing over the past 10 years. The ozone concentrations in Seoul, the biggest city in Korea, are the lowest in all areas with the highest increasing ratio for $95^{th}%$ ozone. It is thought that the active photochemical reaction could affect the higher ozone concentration increase. On the other hand, the ozone concentrations in Jeju are the highest in Korea with the highest increasing ratio for $5^{th}%$, $33^{th}%$, and $50^{th}%$ ozone. It is also thought that the weak $NO_x$ titration could be the reason of higher ozone concentrations in Jeju. In case of Jeju, transport related factors is the major factor affecting the ozone trend. Thus, it is assumed that the variation of ozone trend of Asian region affecting the ozone trend in Jeju, where domestic ozone photochemical reaction is less active than urban area. It is thought that the photochemical reaction plays the role of increasing of ozone concentrations in the urban area, even though the LRT affected on the increase of ozone concentrations in non-urban area.