• Title/Summary/Keyword: air pockets

Search Result 49, Processing Time 0.027 seconds

Similarity Analysis of Scale Ratio Effects on Pulsating Air Pockets Based on Bagnold's Impact Number (Bagnold 충격수를 고려한 압축 팽창하는 갇힌 공기에 미치는 축척비 효과에 대한 상사 해석)

  • Sangmook Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • A developed code based on the unified conservation laws of incompressible/compressible fluids is applied to analyze similarity in pressure oscillations caused by pulsating air pockets in sloshing tanks. It is shown that the nondimensional time histories of pressure show good agreements under Froude and geometric similarities, provided that there are no pulsating entrapped air pockets. However, the nondimesional period of pressure oscillation due to the pulsating air pocket becomes longer as the size of the sloshing tank increases. The discrepancy in the nondimensional period is attributed to the compressibility bias of the entrapped air. To get rid of the compressibility bias, the ullage pressure in a sloshing tank is adjusted based on the Bagnold's impact number. The variation in the period of pressure oscillation according to the ullage pressure is explained based on the spring-mass system. It is shown that the nondimensional period of pressure oscillation is virtually constant when the ullage pressure is adjusted based on the Bagnold's impact number, regardless of tank size. It is found that the Bagold's impact number should be the same, if the time history of pressure is important while an entrapped air pocket pulsates.

An Analysis and Test for Leakage Flow of Sealless Cylinder (고성능 씰리스 실린더의 해석 및 누설유량 시험)

  • Kim, Sung-Jong;Kim, Dong-Soo;Lee, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.961-966
    • /
    • 2004
  • The cylinder without seal has a piston with air bearing which is partly cylindrical and conical shape. The description of system geometry is deviation by the flow rate equation. Then pressure distribution and bearing force equations are derived. Several non-dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively. As a result of leakage flow test, it is evaluation to air bearing in sealless cylinder.

  • PDF

Dosimetric Effects of Air Pocket during Magnetic Resonance-Guided Adaptive Radiation Therapy for Pancreatic Cancer

  • Jin, Hyeongmin;Kim, Dong-Yun;Park, Jong Min;Kang, Hyun-Cheol;Chie, Eui Kyu;An, Hyun Joon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.104-111
    • /
    • 2019
  • Purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART), an emerging technique, is used to address the change in anatomical structures, such as treatment target region, during the treatment period. However, the electron density map used for dose calculation differs from that for daily treatment, owing to the variation in organ location and, notably, air pockets. In this study, we evaluate the dosimetric effect of electron density override on air pockets during online ART for pancreatic cancer cases. Methods: Five pancreatic cancer patients, who were treated with MRgART at the Seoul National University Hospital, were enrolled in the study. Intensity modulated radiation therapy plans were generated for each patient with 60Co beams on a ViewrayTM system, with a 45 Gy prescription dose for stereotactic body radiation therapy. During the treatment, the electron density map was modified based on the daily MR image. We recalculated the dose distribution on the plan, and the dosimetric parameters were obtained from the dose volume histograms of the planning target volume (PTV) and organs at risk. Results: The average dose difference in the PTV was 0.86Gy, and the observed difference at the maximum dose was up to 2.07 Gy. The variation in air pockets during treatment resulted in an under- or overdose in the PTV. Conclusions: We recommend the re-contouring of the air pockets to deliver an accurate radiation dose to the target in MRgART, even though it is a time-consuming method.

Characteristics Analysis of Sealless Cylinders (씰리스 실린더 특성 해석에 관한 연구)

  • 서현석;김동수;유찬수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.824-827
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of seatless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

Modelling and Simulation of Sealless Cylinders (씰리스 실린더 모델링 및 시뮬레이션)

  • Kim, D.S.;Seo, H.S.;Choi, B.O.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1911-1915
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

Design and Evaluation of Noise Suppressing Hydrophone

  • Im, Jong-in
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.546-560
    • /
    • 2000
  • This paper describes the design and evaluation of a noise suppressing hydrophone that is robust to external noise without sacrificing its performance as a receiver. To increase robustness of the receiver to the external noise, first, effects of location of external noise on its performance are analyzed with the finite element method (FEM). Based on the results, geometrical variations are implemented on the structure with additional air pockets and damping layers that work as acoustic shields or scatterers of the noise, and fourteen trial models are developed for the noise suppressing hydrophone structures. The results show that the effect of the external noise is most significant when it is applied to near the mid-side surface of the hydrophone housing. The external noise is isolated most efficiently when two thin damping layers combined with five air pockets are inserted to the circumference of the hydrophone housing. Overall, of the fourteen structural variations of the hydrophone, the best one shows about 87% reduction in the response of the original structure to external noise.

  • PDF

A possible application of the nonuniform electric field measurement using Pockets effect (포켈스 효과를 이용한 불평등 전계 측정)

  • Kang, W.J.;Lim, Y.S.;Choi, J.O.;Chang, Y.M.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.513-515
    • /
    • 2000
  • In this paper, new Partial Discharge (PD) detection technique using Pockels-cell was proposed. For this purpose, PD was generated from needle-plane electrode in air and detected by optical measuring system using Pockets cell, based on Mach-Zehnder interferometer, consisting of He-Ne laser, single mode optical fiber, 50/50 beam splitter and photo detector. We show the characteristic of the proto-type sensor for the corona discharge.

  • PDF

A Possible Application of the Nonuniform Electric Field Measurement Using Laser Interferometer and Pockels Effect (레이저 간섭계와 포켈스 효과를 이용한 불평등 전계 측정)

  • Gang, Won-Jong;Gu, Ja-Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.240-245
    • /
    • 2002
  • In this paper, a novel optical measuring system for the measurement of nonuniform electric field was proposed. The electric field distorted by the discharges was detected through proposed optical measuring system based on the Pockets effect and Mach-Zehnder interferometer. In order to produce distorted electric field, corona discharge was generated from needle-plane electrode in air and detected by optical measuring system. This optical measuring system is constructed by He-Ne laser, single mode optical fiber, $2{\times}2$ 50/50 beam splitter, $LiNbO_3$ Pockets cell, photo detector and PC. In this system, output signal of Pockels sensor is measured by digital oscilloscope and transferred to the PC for recording and statistical processing. Through this paper, a promising possibilities of proto-type optical measuring system were evinced.

Performance Analysis of an Orbiter Air Compressor (오비터 공기 압축기 성능해석)

  • Kim, Hyun-Jin;Cho, Kwang-Myoung;Ko, Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.754-763
    • /
    • 2005
  • This paper introduces a new concept compressor in which piston orbits in the cylinder having an annular space formed between two concentric circular walls. In this configuration, two gas pockets are formed with $180^{\circ}$ phase difference: one between the wrap of the orbiting piston and the inner cylinder wall and the other between the piston wrap and the outer cylinder wall. This alternating feature of gas compression and discharge processes yields several advantages such as low torque variation and low gas pulsation. Computer simulation program has been developed to evaluate the compressor performance. The volumetric, adiabatic, and mechanical efficiencies of the orbiter compressor are calculated to be $85.6\%,\;97.2\%,\;and\;95.2\%$, respectively, when it is used as an air compressor.