• Title/Summary/Keyword: air gap permeance

Search Result 37, Processing Time 0.027 seconds

Analysis of Magnetic Circuit and Static Thrust of a Double-sided Linear Pulse Motor (양측식 선형펄스모터의 자기회로 및 정추력해석)

  • 박한석;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 1996
  • In this paper, the characteristics of a double-sided linear pulse motor (DLPM) with permanent magnet are analysed using the method which combined the coenergy method and the equivalent magnetic circuit method. In the process of computation, the magnetic material nonlinealities of the permanent magnet, the primary and the secondary core are interpolated by the cubic spline method. Then, the equivalent magnetic circuit modelled by the permeance method including airgap reluctance, which is a function of displacement, is obtained. The static thrust which is the derivative of coenergy is computed by Newton Raphson method at each dispacement. And, in order to investigate the characteristics of the DLPM, the thrust shows as a function of displacement, input current and air gap. The simulation resuls are compared with experimental ones obtained from the DLPM with 2 phase and 4 poles.

  • PDF

The Design of Linear DC Motor with Double-Sided Moving Permanent Magnets by Permeance Method (퍼미언스법에 의한 양측식 영구자석 가동형 LDM의 설계)

  • Bae, S.S.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.;Kim, I.N.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.209-213
    • /
    • 1998
  • In the paper, we present the design procedure and analysis the fundamental characteristics for Linear DC Motor(LDM) using permeance method and finite element method (FEM). Designed LDM is made of two permanent magnets, three iron core and armature windings. For the design of the LDM, first of all it is necessary to calculate the air gap flux density and thrust force, after that to determine core size, the numbers of winding turns, winding width, etc. To demonstrate the method of caculation yields the right results, we used Maxwell program package for computing magnetic fields. Finally we find that the proposed design procedure in this paper is effective to design of LDM.

  • PDF

A study on the PWM type High Speed Electromagnet (PWM 방식 고속 전자석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong;Song, Sung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.127-135
    • /
    • 1994
  • This paper is concerned about a high speed electromagnet of Pressure control solenoid valve. Solenoid valve is controlled by means of Pulse width modulation. The magnetostatic field problem on a solenoid is numerically solved by the 2-D axisymmetric finite element method. And permeance method is adopted for analysing the static and dynamic property of solenoid part theoretically. In addition, in this study, experiments on solenoid part were performed in order to measure the magnetic force and plunger displacement. The numerical results coincided with the experimental results. As a result, the magnetic force has the linear relation with displacement of plunger and the primary factors on the performance of PWM type high speed electromagnet are coil resistance, plunger mass, and the length of air gap between plunger and core.

  • PDF

Analysis of the Transient State of the Squirrel Cage Induction Motor by Means of the Magnetic Equivalent Circuit Method

  • Jeong Jong-Ho;Lee Eun-Woong;Cho Hyun-Kil
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.34-38
    • /
    • 2005
  • The finite element method is very flexible for new shapes and provides flux distribution, magnetomotive force, eddy currents, and torques. However, it requires lengthy computational time in order to achieve desired accuracy. The magnetic equivalent circuit method takes less computation time than the finite element method. Therefore, the finite element method is mainly used to confirm the completed design. The magnetic equivalent circuit method is convenient for complicated analysis of the transient state of the induction motor. The magnetic equivalent circuit method is restricted to only one direction of magnetic flux. In this paper, the construction elements (that is, stator iron, rotor iron, yoke, air gap, etc.) of the squirrel cage induction motor were represented by a flux tube and the air gap magnetomotive force was calculated by the magnetic equivalent circuit method. Starting transient torque and phase current of the squirrel cage induction motor were verified by the theoretical calculation and the experiment.

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

Effect of Tooth Shape and Unbalanced M.M.F on Static Thrust Force Characteristics of Linear Pulse Motor (리니어 펄스 모터에서 치 형상과 기자력 불평형이 정추력 특성에 미치는 영향)

  • Lee, Dong-Ju;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Seong-Jong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.131-137
    • /
    • 2000
  • 2 phase 8 pole HB-type(flat-type) Linear Pulse Motor can be used as the high precision position actuator because of its many advantages (simple control circuit, high stiffness characteristics, etc). Also, using the microstep drive, its noise and vibration can be reduced considerably and positional resolution may be increased further. But, $20^{\circ}$tapered tooth shape to reduce the normal force have an much effect on the static thrust force characteristics. And, because of hybrid-type LPM, interaction between the permanent magnet and the excitation current have an effect on the various characteristics of LPM. Hence, in this paper, the effect of tooth shape on static thrust force characteristics was analyzed using the air gap permeance by finite element method. For analyzing the effect of unbalance between the m.m.f of permanent magnet and the m.m.f of excitation current, unbalanced m.m.f coefficient $\sigma$ were introduced with the permenace matrix and switching matrix.

  • PDF

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Linear Pulse Motor Characteristics Analysis using Non-linear Simulation (비선형 시뮬레이션에 의한 리니어 펄스모터의 특성해석)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.584-587
    • /
    • 1992
  • Because linear motor directly drives linear motion, it does not need conversion equipment such as belt and gear. Especially linear pulse motor provide more precise positioning and large force of linear pulse motors. As current manufacture technic of linear pulse motor is much to be desired at home. This motor lay out to make use of computer aided design program, In this paper the experimental motor is 2-phases 4-poles hybrid pulse motor which has teeth per pole Simulation program is divided its function into 4 parts - air gap permeance analysis, permanent magnet & non-linear core operating point determine, winding configuration, leakage flux analysis. It is possible to make motor static and magnetic characteristics for this simulation program. Also, by varying input parameters of the program, experimental motor is to be compared to motor characteristics.

  • PDF

Cogging Torque Reduction Design of Permanent Magnet Motor Using Analytical Method (해석적인 방법을 이용한 Cogging Torque 저감을 위한 영구자석형 전동기 형상 설계)

  • Fang, Liang;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.676_677
    • /
    • 2009
  • In this paper, an analytical method used for predicting the magnetic field distribution and cogging torque characteristic in a permanent magnet synchronous motor (PMSM) is presented. The magnetic field is analyzed with the space harmonic analysis, and the cogging torque is calculated based on the air-gap field distribution and slot-opening effect considered by relative permeance. The validity of the presented analytical method is confirmed by 2-dimensional finite element analysis (FEA). Then this analytical method combines with response surface methodology (RSM) is applied to the prototype PMSM model rebuilding in order to minimize the cogging torque. Finally, an optimized PMSM model is built and the cogging torque reduction is confirmed by FEA.

  • PDF