• Title/Summary/Keyword: air duct

Search Result 538, Processing Time 0.025 seconds

The Study on Performance of an Axial Fan with Centrifugal type Blades in Duct flow (덕트 내 원심식 축류팬의 성능변화에 관한 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Yu, Seung-Hun;Lee, Jai-Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.213-216
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duct using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type blades) was examined to investigate the suitability for in-line duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type blades was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ and $20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}$ to $20^{\circ}$, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

A Study on Turbulent Characteristics of Turbulent Pulsating Flows in a Square Duct (4각 덕트내에서 난류 맥동유동의 난류특성에 관한 연구)

  • Park, G.M.;Go, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.188-198
    • /
    • 1990
  • Turbulent characteristics of turbulent pulsating flows were studied experimentally in a square duct. Velocity waveforms, velocity profiles, and turbulent intensity of turbulent pulsating flow were investigated by using a hot-wire anemometer with data acquisition and a processing system in a square duct with a ratio of 1 ($40mm{\times}40mm$) to 4,000mm long. Turbulent components were shown to be larger in decelerating than in accelerating regions and also larger for a large phase of velocity and U'rms distribution of turbulent flow. The effect of velocity amplitude ratio does not exist for specified time [${\theta}(z^{\prime})$], amplitude ratio (${\mid}U^{\prime}_{rms.os.1}{\mid}/{\mid}U_{m.os.1}{\mid}$), and phase difference (${\Delta}U^{\prime}_{rms.os.1}-{\Delta}U_{m.os.1}$) in either turbulent oscillating or cross-sectional mean velocity components. The effect of dimensionless angular frequency for specified time [${\theta}(z^{\prime})$] can be disregarded because the dimensionless angular frequency does not affect the specified time. The velocity distributions of turbulent pulsating flows for various time-averaged Reynolds numbers are in approximate agreement with the velocity distributions for equivalent Reynolds numbers and 1/7th power law of steady flow.

  • PDF

Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle (자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구)

  • 박원규;배인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

Experimental Study of Reynolds Number Effects on Heat/Mass Transfer and Pressure Drop Characteristics in a Rotating Smooth Duct (매끈한 벽면을 가진 회전덕트 내 레이놀즈 수에 따른 열/물질전달 및 압력강하 특성 연구)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.888-895
    • /
    • 2006
  • The present study has been conducted to investigate the effects of Reynolds number on heat/mass transfer and pressure drop characteristics in a rotating smooth two-pass duct. For stationary cases, the heat/mass transfer and pressure drop Is decreased on turning region of both leading and trailing surfaces as Reynolds number increases. For rotating cases, increment of Reynolds number affects differently the heat/mass transfer and pressure drop on the leading and trailing surfaces. In the first pass, for example, the heat/mass transfer on the leading surface is greatly increased, though the heat/mass transfer on the trailing surface is almost the same. The reason is that effect of the main flow is more dominant than effect of secondary flow. In particular, it gave decrement of the heat/mass transfer and the pressure drop at turning region and upstream region of second pass for both non-rotating and rotating cases.

Performance of an Duct-type HVAC System for Conservation of Ancient Tombs (고분보존용 덕트형 공조시스템의 운전 특성)

  • Jun, Yong-Du;Lee, Kum-Bae;Park, Jin-Yang;Ko, Seok-Bo;Jun, Hee-Ho;Youn, Young-Muk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.29-34
    • /
    • 2006
  • Although the importance of good conservation of historic sites including ancient royal tombs is well aware, still not much attention has been paid for the facilities and systems to preserve those historic sites, which includes precious artifacts as wall paints and carved works, etc. Even the level of general understanding about the environment of the underground space of tombs is not satisfactory. In Korea, researchers have recently begun addressing the importance of maintaining proper environment for underground space as of ancient tombs and are making efforts to develop suitable HVAC(heating, ventilating and air-conditioning) systems for them. In this study, an HVAC system for a tomb ($D{\times}W{\times}H=1.3m{\times}3.0m{\times}1.2m$) was installed to maintain suitable indoor conditions for conservation of tomb. The temperature and humidity inside the tomb were measured to represent the performance of the installed duct-type HVAC system. Vibration levels due to the installed an HVAC system are alive investigated experimentally. According to the measured data, the level of vibration inside the present model tomb with the duct-type unit showed significantly lower values than the case with the indoor unit inside.

  • PDF

Investigation of Performent Standards for the Fire Damper (방화Damper의 성능기준 고찰)

  • Jo, Jung-Dal
    • Fire Protection Technology
    • /
    • s.12
    • /
    • pp.10-17
    • /
    • 1992
  • Dampers which being installad in air duct are Valume damper, fire damper, leakage rated damper, but among them fire damper and leakage rated damper are used for preventing the spread of flame, hot gas and smoke through the duct. this report is aimed to intorduce the test example of the multiple fire damper which was conducted F.I.L.K, simuetaneously to investigate the performent standards and Structure of the fire damper which settled in several countries.

  • PDF

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

Development of Technology to Secure Refuge Space by Using Existing Restroom (화장실을 이용한 층별 피난공간 확보 기술개발)

  • Kim, Ji-Seok;Shin, Hyun-Joon;Kim, Jung-Yup;Park, Byoung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • The fire on a high-rise building would possibly cause fatalities because of ineffective egress due to extended evacuation distance in huge building structure, coupled with dense population, thus requiring secured optimal evacuation method and space. The restroom located in the living space is considered to be useful refuge space which is built with wet pipe and noncombustible materials. This study aimed to develop a system that would make use of the existing restroom as a fire refuge space. Ventilation duct were installed to discharge odor during normal conditions. We could serve the air supply duct to also raise the air pressure in the restroom so as to prevent the toxic gas from gapping around the restroom. The nozzle for the water screen would be installed in restroom door facing the living room to form the water screen which would protect the door. This study is intended to replace the existing refuge space with the restroom in such a way as described above.

Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame (프로판/공기 예혼합화염의 전파거동 및 구조안정화에 대한 정상초음파의 간섭효과)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave on the propagating behavior and structural stabilization of propane/air premixed flame at various equivalence ratios in half-open rectangular duct. Evolutionary features of the flame fronts are caught by high-speed images, and the variation of flame structure and local flame velocities along the propagation are analyzed. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without the agitation: the velocity enhancement diminishes as the equivalence ratio approaches the stoichiometric. Influence of standing wave on the flame overwhelms that of the buoyancy which slants the flame front towards top of the duct, and thus the standing wave contributes to the structural stabilization of propane/air premixed flame.