• Title/Summary/Keyword: air drag

Search Result 259, Processing Time 0.105 seconds

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park Young Soo;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.78-89
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient (C$_{f}$) decreases 60$\%$and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall. In the vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

Comparison of Traction Motor design and characteristics for battery driven hybrid tram (무가선 트램용 추진 전동기 설계 및 특성 비교)

  • Ham, Sang-Hwan;Kim, Kwang-Soo;Kim, Mi-Jung;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

Syudy on the dynamic Stability of Ground Armored Moving Vehicle during cruising river (지상 전투차량의 수상 추진 시 동적 안정성에 대한 연구)

  • Ahn, Tai-Sul;Lee, Kyung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.252-255
    • /
    • 2008
  • In this study, the characteristics of crossing a river of Ground Armored Vehicle (GAV) were evaluated by numerical method and real size tests. 3-D hybrid mesh systems were constructed by 3-D models of the GAV, and a commercial software, FLUENT, was used in numerical analysis. In order to deal with multi-phase problem (air and water), Volume Of Fluid (VOF) method was used, and Moving and Deforming Mesh (MDM) was adapted for unsteady motion of GAV. There were two steps in this research. Firstly, stability of the GAV which cruised a river was evaluated by changing several shapes of water-proof-front-wing of the GAV in steady state, and compared results (free surface shape and drag value in 10km/h) with those of real size tests. Secondly, results of unsteady analysis considering weight and moment of inertia of the GAV were presented. There were showed a maximum velocity with a designed water jet and dynamic stability including pitch, roll, and yaw moment. Based on these results, the optimal shape of water-proof-front-wing of the GAV was determined for a proto-type of the GAV.

  • PDF

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

Simultaneous Measurement of Size and Velocity of Microbubbles inside Opaque Tube Using X-ray PTV Technique (X-ray PTV 기법을 이용한 불투명 튜브 내부의 미세기포의 크기 및 속도 동시 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • The microbubbles were used in various fields, such as turbulent control, drag reduction, material science and life science. The X-ray PTV using X-ray micro-imaging technique was employed to mea-sure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}$=2.7mm) were tested. Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of over-lapped microbubbles. In all of the working fluids tested (deionized water, tap water, 0.01 and 0.10M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The rising velocity was increased with increasing mole concentration. The microbubble can be useful as contrast agent or tracer in life science and biology. The X-ray PTV technique should be able to extract useful information on the behavior of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.

  • PDF

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

OUT-OF-PILE MECHANICAL PERFORMANCE AND MICROSTRUCTURE OF RECRYSTALLIZED ZR-1.5 NB-O-S ALLOYS

  • Ko, S.;Lee, J.M.;Hong, S.I.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.421-428
    • /
    • 2011
  • The out-of-pile mechanical performance and microstructure of recrystallized Zr-1.5 Nb-S alloy was investigated. The strength of the recrystallized Zr-1.5Nb-O-S alloys was observed to increase with the addition of sulfur over a wide temperature range, from room temperature up to $300^{\circ}C$. A yield drop and stress serrations due to dynamic strain were observed at room temperature and $300^{\circ}C$. Wavy and curved dislocations and loosely knit tangles were observed after strained to 0.07 at room temperature, suggesting that cross slip is easier. At $300^{\circ}C$, however, dislocations were observed to be straight and aligned along the slip plane, suggesting that cross slip is rather difficult. At $300^{\circ}C$, oxygen atoms are likely to exert a drag force on moving dislocations, intensifying the dynamic strain aging effect. Oxygen atoms segregated at partial dislocations of a screw dislocation with the edge component may hinder the cross slip, resulting in the rather straight dislocations distributed on the major slip planes. Recrystallized Zr-Nb-S alloys exhibited ductile fracture surfaces, supporting the beneficial effect of sulfur in zirconium alloys. Oxidation resistance in air was also found to be improved with the addition of sulfur in Zr-1.5 Nb-O alloys.

Interface Chemical and Hydrodynamic Aspects of Deinking Process Using Flotation for Waste paper Recycling(II) (부유선별법을 적용한 탈묵공정의 계면화학적 및 수력학적 원리(II) -수력학적 원리를 중심으로-)

  • Sun-Young Park
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.11-16
    • /
    • 1996
  • In the flotation system for deinking process, the ink partcles musl collidc with the air bubbles for adhesion The probability of bubble-particle collision is largely dependent on the hydrodynamic conditions The main reason for the very small ink particles not to be able to float easily may be tound in the hydrodynamic effects, which make small ink particlcs move following the slreamlines around the bubbles rather than achually collide with bubbles. Also. the low floatabdily of the large and heavy ink particles is due to the gravity force and viscous drag which affect uprising molinn of particles through the liquid. Therefore, it is vely important to control not only the surface chemical conditions but the hydrodynamic conditions in practical floialion system

  • PDF

Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine

  • Zamani, Mahdi;Maghrebi, Mohammad Javad;Moshizi, Sajad A.
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.595-616
    • /
    • 2016
  • Providing high starting torque and efficiency simultaneously is a significant challenge for vertical axis wind turbines (VAWTs). In this paper, a new approach is studied in order to modify VAWTs performance and cogging torque. In this approach, J-shaped profiles are exploited in the structure of blades by means of eliminating the pressure side of airfoil from the maximum thickness toward the trailing edge. This new profile is a new type of VAWT airfoil using the lift and drag forces, thereby yielding a better performance at low TSRs. To simulate the fluid flow of the VAWT along with J-shaped profiles originated from NACA0018 and NACA0030, a two-dimensional computational analysis is conducted. The Reynolds Averaged Navier-Stokes (RANS) equations are closed using the two-equation Shear Stress Transport (SST) turbulence model. The main objective of the study is to investigate the effects of J-shaped straight blade thickness on the performance characteristics of VAWT. The results obtained indicate that opting for the higher thickness in J-shaped profiles for the blade sections leads the performance and cogging torque of VAWT to enhance dramatically.