• Title/Summary/Keyword: air dispersion model

Search Result 198, Processing Time 0.028 seconds

Effect of Operating Conditions on Characteristics of Combustion in the Pulverized Coal Combustor (미분탄 연소로의 운전조건이 연소특성에 미치는 영향)

  • Kang, Ihl-Man;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.139-148
    • /
    • 1999
  • In oder to analyze the effect of operating conditions on pulverized coal combustion, a numerical study is conducted at the pulverized coal combustor. Eulerian approach is used for the gas phase, whereas Lagrangian approach is used for the particle phase. Turbulence is modeled using standard ${\kappa}-{\varepsilon}$ model. The description of species transport and combustion chemistry is based on the mixture fraction/probability density function(PDF) approach. Radiation is modeled using P-l model. The turbulent dispersion of particles is modeled using discrete random walk model. Swirl number of secondary air affects the flame front, particle residence time and carbon conversion. Primary/Secondary air mass ratio also affects the flame front but little affects the carbon conversion and particle residence time. Air-fuel ratio only affects the flame front due to lack of oxygen. Radiation strongly affects the flame front and gas temperature distribution because pulverized coal flame of high temperature is considered.

  • PDF

Integration of Geographic Information System and Air Dispersion Model (지리정보체계와 대기확산의 통합)

  • Kim, Myung-Jin;Han, Eui-Jung;Kang, In-Goo;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 1996
  • Environmental Impact Assessment (EIA) in Korea has worked toward environmental conservation and decision making since the Environmental Impact Statement of 1981. In order to implement the EIA process effectively, we have developed a system for and various methods of EIA. Among these methods, the Geographic Information System (GIS), which was introduced recently in Korea, can be used to integrate geographic and attribute data effectively. So GIS begins to increase the necessity of the application in EIA process. This study includes the integration method of the GIS and air dispersion model on the odor impact assessment of $NH_3$ emission in landfill sites. First, it computes surface values by grids using the Digital Elevation Model (DEM). Second, it presents predicted data considering topography and climate by grids. Third, it shows the overlaying analysis of the administrative map including population and odor predictive data. The results could systematically analyze impact areas, and assess residential impact by alternatives. Integration analysis of the air predictive model and GIS as a residential area assessment can support negotiations of public and proponent in EIA.

  • PDF

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

Application of Passive Sampler in Validation and Calibration of Air Dispersion Model (대기확산모델의 검정 및 보정을 위한 Passive Sampler의 활용)

  • 김선태;김주인;김성근;배장영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.170-171
    • /
    • 1999
  • 대기 중 오염물질의 확산 및 미래의 예측을 위하여 대기확산모형을 많이 사용하고 있으며, 국내에서 사용하고 있는 대기확산모형의 대부분은 미국 EPA에서 보급하는 것을 사용하고 있다. 이 중에서 최근에 많이 사용하고 있는 단기모형으로는 기간과 지형이 고려되는 ISCST3 모형을 들 수 있다. 국내 모델의 사용에 있어서 가장 중요한 문제점은 모델의 검정과 보정을 위한 data의 부재를 들 수 있다.(중략)

  • PDF

Numerical Simulation of NOx Concentration in Gwangyang Bay, Korea (광양만권 질소산화물(NOx)의 수치모의)

  • 이상득;유지영
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.897-905
    • /
    • 2002
  • A three-dimensional photochemical air pollution model considered advection, dispersion, photochemical reactions, and precipitation processes was developed. The calculated results of meteorological observation clearly exhibited geographical effects of Gwangyang Bay, in which land and sea breezes, mount-valley winds and local circular winds occurred. The observed results of daytime NOx concentrations were slightly higher than the calculated NOx concentrations in Yosu industrial complex, Gwangyang iron mill, and container yard. Eventually, the calculated NOx results generally agreed well with the observed ones.

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

A Study on Prediction Model Conformity of Line Source in Urban Area (도시지역에서의 선오염원 예측모델 적합성에 관한 연구)

  • Kim, Jin Hong;Park, Sun hwan;Chang, Yoon young
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • Despite the limitations and difficulty in the application of CALINE3 model for air dispersion prediction of roads and tunnels construction businesses in South Korea, the model is being used in all roads construction projects. This study compared the predicted values of CALINE3 and AERMOD model that is suggested by the US EPA, to the values of GRAL model, a Lagrangian particle tracking model developed in Europe, by applying the models to the existing roads of the urban areas. The result showed low relevance to the actual measurement value in the case of CALINE3 model, thus displaying a low trusted value when applying to the urban areas. In the case of using AERMOD model, the predicted values were overly expressed compared to the actual measurement value, thus leading to the need of adding a No2 conversion method to the model in the future. In the case of GRAL model, a Lagrangian particle tracking model, the relevance between the actual and predicted values were high as the model considers the surrounding topography and the buildings all together, thus confirming that the model can be used for air dispersion prediction of the roads in the urban areas. Lastly, the result of this study testing the air prediction models in Jeongneung Measuring Station points that it is necessary for the future studies to expand the testing areas and test the validity of the models continuously.

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF