• Title/Summary/Keyword: air diffusion

Search Result 882, Processing Time 0.022 seconds

The Possibility on Utilization of Underground Pit for Reduction of Cooling and Heating Load (냉방과 난방 부하 감소를 위한 지하피트의 이용 가능성)

  • Cho Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.144-150
    • /
    • 2006
  • The purpose of this study is to predict outlet temperature and humidity through underground pit for the reduction of cooling load and heating load. Commonly, the underground temperature is lower than outdoor in summer but the reverse happens in winter. When the outdoor average air temperature is $25.7^{\circ}C$ during cooling periods, the average outlet air temperature through underground pit is $23.6^{\circ}C$ with 3 m-depth and 60m-length and is $22.2^{\circ}C$ with 3 m-depth and 150 m-length. When the outdoor average air temperature is $4.9^{\circ}C$ during heating periods, the average outlet air temperature through underground pit is $7.7^{\circ}C$ with 3m-depth and 60 m-length and is $10.8^{\circ}C$ with 3 m-depth and 150 m-length. The outlet air temperature is affected by more length than depth of underground pit. The diffusion ratio of outdoor humidity is $-7.7\times10^{-8}kg/s$ in cooling periods and $9.29\times10^{-7}kg/s$ in heating periods.

Combustion Characteristics of a Turbulent Diffusion Flat Flame According to Oxygen Enriched Concentration of Combustion Air (연소공기의 산소부화농도에 따른 난류확산 평면화염의 연소특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by improving the burning rate and by increasing the flame temperature. Flame figures, OH radical intensities, temperature distributions and emissions concentration were examined according to oxygen enriched concentration(OEC) in a turbulent diffusion flat flame. As long as the oxygen enriched concentration was increased, the length and volume of the flat flame was decreased while OH radical intensity was raised and the flame temperature was increased. However, RMS of the fluctuating temperature was decreased, and more homogeneous temperature field was formed. Thermal NO also was increased with increase of oxygen enriched concentration, but CO was decreased due to the increase of chemical reaction rate.

A Study of Particle Diffusion from a Cavity in Flow Tube (유동관에 형성된 Cavity로부터의 입자확산현상 연구)

  • Lee, J.W.;Goo, J.H.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.29-38
    • /
    • 1994
  • Particle contamination into and out of a cavity-cylindrical cavities with aspect ratios(width/depth) less than, equal to 1 and langer than 1, and also three dianensional T's attached to a cylindrical flow tube was studied numerically, using a finite difference method. In the process of unsteady particle diffusion, the particles contained in a concentration boundary layer near the tube wall plays an important role in the initial stage, after which a quasi-steady concentration profile is developed inside the cavity, resulting in an exponential change of concentration with time. Average concentration and its rate of change are observed to be closely correlated by a power law function in terms of Reynolds number and the logarithm of Schmidt number. Effects of the three parameters-Re, Sc, and aspect ratio-are analysed and well explained.

  • PDF

Dynamic Properties of Outwardly Propagating Spherical Hydrogen-Air Flames at High Temperatures and Pressures

  • Kwon, Oh-Chae
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.325-334
    • /
    • 2004
  • Computational experiments on fundamental un stretched laminar burning velocities and flame response to stretch (represented by the Markstein number) of hydrogen-air flames at high temperatures and pressures were conducted in order to understand the dynamics of the flames including hydrogen as an attractive energy carrier in conditions encountered in practical applications such as internal combustion engines. Outwardly propagating spherical premixed flames were considered for a fuel-equivalence ratio of 0.6, pressures of 5 to 50 atm, and temperatures of 298 to 1000 K. For these conditions, ratios of unstretched-to-stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), similar to the flames at normal temperature and normal to moderately elevated pressures, implying that the "local conditions" hypothesis can be extended to the practical conditions. Increasing temperatures tended to reduce tendencies toward preferential-diffusion instability behavior (increasing the Markstein number) whereas increasing pressures tended to increase tendencies toward preferential-diffusion instability behavior (decreasing the Markstein number).

Soot Formation and Oxidation in Air-Diluted Propane Diffusion Flames under Elevated Pressures (압력조건에서 공기로 희석된 프로판 확산화염의 매연 생성과 산화 특성)

  • Bae, Seungman;Nam, Younwoo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.267-268
    • /
    • 2012
  • Soot formation and oxidation characteristics of air-diluted propane diffusion flames have been experimentally investigated under the elevated pressure conditions. PAH concentrations showed more pressure sensitive behavior comparing to soot volume fractions. The flame/soot temperatures in soot oxidation region were obtained using the MOLLIP technique. Under the complete soot oxidation environment, the flame/soot temperature is increased with pressure. The increased temperature could accelerate the soot oxidation process and then exothermic oxidation reaction, in turn, could further raise the flame/soot temperature, which would result in the enhancement of soot oxidation process.

  • PDF

Morphological Study on the Soot Transition in a Propane/Air Laminar Diffusion Flame (프로판 층류확산화염의 그을음 천이에 대한 형태학적 연구)

  • Shim, Sung-Hoon;Yoo, Chang-Jong;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.24-33
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM in a co-flowing, propane/air laminar diffusion flame. The average size of mature soot particles deposited in the luminous flame edge is strongly dependent on their axial position in a typical heavily sooting flame. The surface growth of liquid-phase PAHs molecules and the transition to soots from fully-developed precursors could be observed in the radial deposition of the flame. Two sooting regimes were found: one is the transition from the condensed-phase precursors; the other is the aggregation of smaller soot particles (or chains of them) to be carried along particle path lines. In the high temperature flame edge outside the soot luminous flame surface, the very thin fiber-like structures, which are about 10 nm thick, were found.

  • PDF

Effect of Oxygen Enriched Air on the Combustion of a Turbulent Diffusion Flat Flame (산소부화공기가 난류 확산 평면화염의 연소에 미치는 영향)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and by the high temperature flame. Flame figures, OH radical intensities, temperature distributions and emission concentrations were measured according to oxygen enriched concentration and swirl number in a turbulent diffusion flat flame. It appeared that flame figure became flat and NO concentration decreased with increase of swirl number, and that the flame temperature increased high with increase of oxygen enriched concentration. In particular, it was most significant between oxygen concentration $40{\sim}60%$.

  • PDF

A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor (하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

Prediction of VOCs Emissions from Multi-layers Materials (복합자재에서의 VOCs 방출량 예측에 관한 연구)

  • Yoon, Chang-Hyun;Kwon, Kyung-Woo;Park, Jun-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.9-14
    • /
    • 2005
  • The purpose of this study is to predict VOCs emission rates from multi-layers materials, which are composed of single-layer materials having various VOCs emission rates, by using effective diffusion coefficients of the single-layer materials. The study was consisted of two parts; the one is the prediction of VOCs emission rates from multi-layer materials through numerical methods. The other is the measurement of VOCs emissions rates of wall composite and floor composite in Mock-up rooms for comparing the prediction and the experiments' values. The results of the study show that the short-term VOCs emission rates of multi-layers materials can be predicted from the effective diffusion coefficients of single materials in odor accuracy.

  • PDF

Operating Characteristics of a Bubble Pump for Diffusion-Absorption Refrigerator (확산형 흡수식 냉동기용 기포펌프의 운전특성에 관한 연구)

  • 이현경;김선창;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.878-887
    • /
    • 2001
  • Experimental investigation has been carried out to examine the operating characteristics of a bubble pump for diffusion absorption refrigerator. The effects of heat input and delivery height on generation rate of refrigerant vapor and circulation rate of solution have been investigated. as a result heat input and delivery height increase, circulation rate of solution increases. And the smaller the tube diameter, the larger the circulation rate of solution. Pumping ratio increases to a critical point and then decrease with the increase of heat input, and it increases with the increase in delivery height. In this paper, Marcus's analytical theory was also examined. It was found that the Marcus\`s analytical theory of a bubble pump was not appropriate for a bubble pump using ammonia aqueous solution as a working fluid.

  • PDF