• Title/Summary/Keyword: air defense

Search Result 592, Processing Time 0.029 seconds

A Study on Ways of Improvement to Effectively Control the Flight Information Region focusing on air space of IEODO (비행정보구역(Flight Information Region)의 효율적 관리를 위한 개선방안 연구 : 이어도(IEODO) 상공을 중심으로)

  • Kim, Choon-San;Bang, Jang-Kyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.43-53
    • /
    • 2011
  • It is well known some Foreign aircraft used to fly INCHEON FIR(Flight Information Region), especially the island of IEODO without a flight plan, even though foreign aircraft is subject to submitting a flight plan to Flight Information Center(FIC) before its flight. IEODO is a sunken rock 4.6m beneath the sea level, 149km away from Marado. Facing the Yangtze river's sea entrance horizontally and military zones of Korea and China vertically, IEODO is a very important place for national security of North East Asia because it is located at the boundary between China East Sea and Yellow Sea of South Korea. Moreover, JDZ(the 7th mine lot) is just 77NM from IEODO, which possesses natural gas eight times bigger than the gulf region and oil 4.5 times bigger than that of the U.S. In addition, INCHEON FIR, managed by MLTM(Air Traffic Control Center) and Japanese Self-Defense Force's JADIZ(Japanese Air Defense Identification Zone) are overlapping on IEODO whose air space is very complex. This paper focuses on air space, FIR, ADIZ(Air Defense Identification Zone) and related airspace system and suggests strategic implications of how to prevent foreign aircraft from invading INCHEON FIR without permission and of how to utilize the airspace efficiently.

U.S. Navy next generation Aegis Ships and AMDR(Air & Missile Defense Radar) (미 해군의 차기 이지스함과 AMDR)

  • Kim, Soo-hong;Kim, Young-ho;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.462-464
    • /
    • 2015
  • Since the first Aegis Cruiser USS Ticonderoga was constructed, Arleigh Burke class destroyers are being mass constructed as U.S. Naval capital surface ships and consistently improved the performance. In recent years, the newest aegis combat system, Baseline 9, was deployed. Aegis BMD, aegis ships which have BMD capability, is participated BMDS(Ballistic Missile Defense System) as a sea based BMD. And AN/SPY-1D will be replaced by AMDR(Air & Missile Defense Radar), advanced anti-air radar system to defend effectively against increased ballistic missiles threat from DDG-51 Flight III. In this paper, development status and technical characteristics of each type of aegis ships are researched and characteristics of AMDR are surveyed and described.

  • PDF

Performance Test of Vitiated Air Heater with High Temperature and High Pressure (고온 고압 공기가열기 성능시험)

  • Lee, Jungmin;Na, Jaejeoung;Hong, Yunky;Kim, Jeongwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • This study presents the performance test results and the analyses of the vitiated air heater with high temperature and high pressure. In the performance test, four test conditions and three rake measurement conditions were implemented. In the results of the performance test, the vitiated air heater met targets of temperature and flow rate, and the performance with maximum temperature of 2000 K and maximum combustion pressure of 40 bar was confirmed. Flow rate of provided methane increased 36% more than what was calculated, and 19.6% difference was displayed between measured temperature and theoretically calculated temperature.

Performance Analysis of Energy-Efficient Secure Transmission for Wireless Powered Cooperative Networks with Imperfect CSI

  • Yajun Zhang;Jun Wu;Bing Wang;Hongkai Wang;Xiaohui Shang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2399-2418
    • /
    • 2023
  • The paper focuses on investigating secure transmission in wireless powered communication networks (WPCN) that involve multiple energy-constrained relays and one energy-constrained source. The energy is harvested from a power beacon (PB) while operating in the presence of a passive eavesdropper. The study primarily aims to achieve energy-efficient secure communications by examining the impact of channel estimation on the secrecy performance of WPCN under both perfect and imperfect CSI scenarios. To obtain practical insights on improving security and energy efficiency, we propose closed-form expressions for secrecy outage probability (SOP) under the linear energy harvesting (LEH) model of WPCN. Furthermore, we suggest a search method to optimize the secure energy efficiency (SEE) with limited power from PB. The research emphasizes the significance of channel estimation in maintaining the desired performance levels in WPCN in real-world applications. The theoretical results are validated through simulations to ensure their accuracy and reliability.

Defense Strategy against Multiple Anti-Ship Missiles using Anti-Air Missiles (다수 대함유도탄에 대한 함정의 대공방어유도탄 운용기법 연구)

  • Kim, Do-Wan;Yun, Joong-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.354-361
    • /
    • 2011
  • In this paper, an efficient defense strategy of single naval ship using short range anti-air missiles against the threat of multiple anti-ship missiles is suggested. The defense logic is based on the estimated future trajectory of anti-ship missiles by using current radar information. The logic is designed to maximize the range of interception of anti-ship missiles so that the chance of interception can be increased although the prior tries turn out to be fail. Basically, the decision making for the allocation of a defense missile is achieved by comparing the total kill probability and the estimated intercepting point. Performance of the proposed logic is investigated by nonlinear planar numerical simulations.

The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Aircraft Defense (복합 휴리스틱 알고리즘을 이용한 지대공 유도무기 최적배치 모형 : 항공기 방어를 중심으로)

  • Kwak, Ki-Hoon;Lee, Jae-Yeong;Jung, Chi-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.43-56
    • /
    • 2009
  • In korean peninsular, aircraft defense with SAM (Surface-to-Air Missile) is very important because of short range of combat space in depth. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Set covering model which can handle both factors simultaneously and Multi-heuristic algorithm for solving allocation problem of the batteries and missile assignment problem in each battery. Genetic algorithm is used to decide optimal location of the batteries. To determine the number of SAM, a heuristic algorithm is applied for solving missile assignment problem. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of air defense operations.

A Feasibility Study on the Estimation of a Ship's Susceptibility Based on the Effectiveness of its Anti-Air Defense Systems (함정 대공방어시스템의 효과도를 활용한 피격성 추정 가능성 연구)

  • GeonHui Lee;SeokTae Yoon;YongJin Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • Recently, the increased use of anti-ship guided missiles, a weapon system that detects and attacks targets in naval engagement, has come to pose a major threat to the survivability of ships. In order to improve the survivability of ships in response to such anti-ship guided missiles, many studies of means to counteract them have been conducted in militarily advanced countries. The integrated survivability of a ship can be largely divided into susceptibility, vulnerability, and recoverability, and is expressed as the conditional probability, if the ship is hit, of damage and recovery. However, as research on susceptibility is a major military secret of each country, access to it is very limited and there are few publicly available data. Therefore, in this study, a possibility of estimating the susceptibility of ships using an anti-air defense system corresponding to anti-ship guided missiles was reviewed. To this, scenarios during engagement, weapon systems mounted to counter threats, and maximum detection/battle range according to the operational situation of the defense weapon system were defined. In addition, the effectiveness of the anti-air defense system and susceptibility was calculated based on the performance of the weapon system, the crew's ability to operate the weapon system, and the detection probability of the detection/defense system. To evaluate the susceptibility estimation feasibility, the sensitivity of the detailed variables was reviewed, and the usefulness of the established process was confirmed through sensitivity analysis.

A Development of the Operational Architecture of a Low Altitude Air Defense Automation System (저고도 방공자동화체계의 운용아키덱처 개발)

  • Son, Hyun-Sik;Kwon, Yong-Soo
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.31-45
    • /
    • 2008
  • This paper describes a development of the operational architecture of a low altitude air defense automation system using a systems engineering approach. The future battlefield is changing to new system of systems that command and control by the network based BM/C4I. Also, it is composed of various sensors and shooters in an single theater. Future threats may be characterized as unmanned mewing bodies that the strategic effect is great such as UAVs, cruise missiles or tactical ballistic missiles. New threats such as low altitude stealth cruise missiles may also appear. The implementation of a low altitude air defense against these future threats is required to complex and integrated approach based on systems engineering. In this view, this work established an operational scenario and derived operational requirements by identifying mission and future operational environments. It is presented the operational architecture of the low altitude air defense automation system by using the CORE 5.0.

Study on Improvement of Air Conditioning Units for Anti Aircraft Gun Wheeled Vehicle (차륜형 대공포 냉방장치 성능개선 연구)

  • Jeon, Ki-Hyun;Lee, Dong-Hui;Lee, Boo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1099-1103
    • /
    • 2013
  • A combat vehicle needs to have an air-conditioning unit. Accordingly, new combat systems have tended to apply an integrated heating, cooling, and ventilating system. The air conditioning unit used depends on the combat vehicle's purpose of use. In this study, we studied an air-conditioning unit for an armored combat vehicle as a special use and military specification and tried to improve the air-conditioning unit's performance.

The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity (항공기 주기환경이 대기부식위험도에 미치는 영향)

  • Yun, Juhee;Lee, Dooyoul;Park, Sungryul;Kim, Min-Saeng;Choi, Dongsu
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.