• Title/Summary/Keyword: air change per hour

Search Result 33, Processing Time 0.026 seconds

Evaluation of the location of the Outlets according to the Analysis of Ventilation conditions (환기상태 분석에 따른 급 배기구 위치 평가)

  • Moon, Yong-Jun;Kim, Hyouk-Soon;Kwak, Myong-Keun;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1207-1212
    • /
    • 2008
  • The purpose of this study is to evaluate the location of the outlets in the mechanical ventilation system installed in apartment. We performed the numerical analysis to estimate the ventilation effectiveness and the indoor $CO_2$ concentration considering the occupants and the condition with inlet and outlet in each room. From the numerical results, modified location of the outlets is about 10% high than designed one with respect to the ventilation effectiveness when the occupants are not considered. But designed location of inlet and outlet in living room and kitchen is better than modified one with respect to the reduction of $CO_2$ concentration in the living room and kitchen with occupants. In case of our model, Air change per hour (0.7) is not enough to sustain the acceptable criteria of $CO_2$ concentration (1000ppm) in the room with the occupants

  • PDF

Effect of Lock Operations on Airtightness of Sliding and LS Window Systems (잠금장치 작동에 따른 미서기 및 LS 창호 시스템의 기밀성)

  • Park, Jong Jun;Yun, Yu Ra;Kim, Young Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.449-454
    • /
    • 2015
  • In this study, the effects of lock operations on the infiltration rates for the two window types sliding and lift sliding (LS) are investigated through experiment and simulation. The airtightness levels of the two window types-with locks both on and off-were measured according to the KS F 2292 Test method of airtightness that is used for windows and doors. The air-flow rates of both window types with the locks on for a pressure differential of 10 Pa are $1.98m^3/(m^2h)$ and $1.68m^3/(m^2h)$, respectively; with the locks off, the air-flow rates of the sliding and LS windows are $2.64m^3/(m^2h)$ and $5.83m^3/(m^2h)$, respectively, whereby the air-flow rates are 33% higher for sliding and 247% higher for LS. The air change per hour (ACH) was calculated using the ventilation-simulation software CONTAM. For the sliding window, the ACH changed from 0.45 to 0.57 when the lock was operated from on to off, representing an increase of 27%. For the LS window, the ACH changed from 0.29 to 0.81, showing an increase of 179%.

Heating Power Consumption Comparison Study Between Static Insulation and Dynamic Insulation at KIER Twin Test Cell (동적 단열재를 적용한 건물에서의 에너지소비량 비교 분석)

  • Kang, Eun-Chul;Park, Yong-Dai;Lee, Euy-Joon;Yun, Tae-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.919-924
    • /
    • 2008
  • Power consumption in the building thermal load could be the sum of the building fabric conduction load, building ventilation convection load and other such as radiation loss load. Dynamic Breathing Building (DBB) is the state-of-the-art to improve the wall insulation and indoor air quality(IAQ) performance as making air flow through the wall. This heat recovery type DBB contributes the power consumption saving due to the improved dynamic U-value. KIER twin test cell with static insulation(SI) and dynamic insulation(DI) at KIER was developed to test building power consumption at the real outside conditions. Then, the actual results were compared with the theory to predict the power consumption at the KIER twin test cell and introduced the building new radiation loss factor $\alpha$ to explain the difference between the both the theory and the actual case. As the results, the power consumption at the breathing DI wall building could saved 10.8% at the 2ACH(Air change per hour) compared with conventional insulation. The building radiation loss factor $\alpha$ for this test condition to calibrate the actual test was 0.55 in the test condition.

  • PDF

THE NUMERICAL SIMULATION OF HYDROGEN JET DIFFUSION FOR HYDROGEN LEAKAGE IN THE ENCLOSED GEOMETRY (밀폐공간에서 수소 누설로 인한 수소 제트 확산에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.176-182
    • /
    • 2009
  • In the present study, a numerical simulation for the diffusion of hydrogen jet in a enclosure was performed to aid the leakage test of the hydrogen for the safety of the hydrogen vehicle. The temporal and spatial distributions of the hydrogen concentration in the test chamber are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of forced ventilation for relieving the accumulation of the leaked hydrogen gas in the chamber, which include location of open windows, size of leakage nozzle, and leakage rate among others. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

  • PDF

THE NUMERICAL SIMULATION OF HYDROGEN JET DIFFUSION FOR HYDROGEN LEAKAGE IN THE ENCLOSED GEOMETRY (밀폐공간에서 수소 누설로 인한 수소 제트 확산에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.32-38
    • /
    • 2009
  • In the present study, a numerical simulation for the diffusion of hydrogen jet in a enclosure was performed to aid the leakage test of the hydrogen for the safety of the hydrogen vehicle. The temporal and spatial distributions of the hydrogen concentration in the test chamber are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of forced ventilation for relieving the accumulation of the leaked hydrogen gas in the chamber, which include location of open windows, size of leakage nozzle, and leakage rate among others. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF

Evaluation of Internal through Analysis of Airflow and Ventilation of Coal Storage Shed (옥내저탄장 기류 흐름 및 환기량 분석을 통한 내부 유동 평가)

  • Jo, Hyun-Joung;Lee, Jin-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.334-342
    • /
    • 2022
  • The stringent air environment conservation act forced to build an indoor dome for coal storage. However, it causes some problems due to accumulation of fly ash and harmful substances inside. To solve this problem, this study analyzed the pattern of internal airflow and the amount of ventilation for an indoor coal yard. Overall, the airflow inside the indoor coal yard tended to move to the southwest facing the mountain. In addition, sea-breeze was blowing from the northern louver window facing the sea, where airflow was flowing in. The total flow rate flowing into the indoor coal yard was 918,691 m3/h, and the number of natural ventilation per hour was 0.6 times. Therefore, it is proposed to install a forced ventilation device at the location where internal air flow is concentrated.

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.

Evaluation of Ventilation Performance of a Residential Unit for Different Sampling Points through Actual Field Tests (실증실험을 통한 측정 위치에 따른 주거공간 환기성능 평가)

  • Kwag, Byung Chang;Lee, Soo Man;Kim, Gil Tae;Kim, Jong Yeob
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.93-106
    • /
    • 2022
  • Ventilation plays an important role in controlling indoor air quality. Due to the recent spread of infectious diseases such as COVID-19 and with people spending more time indoors, there's been increased attention on the importance of ventilation performance. In many countries, ventilation is regulated by airflow rates and the number of air changes per hour (ACH). However, airflow rates and ACH alone do not provide an accurate account of actual indoor pollutant removal and ventilation uniformity in a space. This study looked into the ventilation performance of an actual residential unit using several sampling points instead of basing it off of airflow and air change rates. Literature review was used to derive relevant influencing factors and the tracer gas dilution method was used for the field test. The study measured air velocity, age of air, and ventilation efficiency at several locations and compared them to the average value at the center of the test space to determine the differences in ventilation performance at the selected measurement points. The study showed that different sampling locations resulted in different ventilation values. Findings of this study will be used to develop an experimental procedure for evaluating indoor ventilation performance of actual residential spaces.

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.