• Title/Summary/Keyword: air bubble device

Search Result 15, Processing Time 0.021 seconds

A Study on Cost-effective Treatment of Wastewater and Odor Reduction for Southeast Asian Market Entry

  • Jung, Min-Jae;Kim, Yong-Do;Kwon, Lee-Seung;Lee, Woo-Sic;Kwon, Woo-Taeg
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.12
    • /
    • pp.23-29
    • /
    • 2018
  • Purpose - The purpose of this study is to apply a cost effective ultrasonic odor reduction method that generated micro-bubbles using ejector to the Southeast Asian wastewater market. Research design, data, and methodology - A leather maker located in Ansan-city, Gyunggi-do, South Korea was sampled from the collection tank to select experimental materials. Experimental setup consisted of circulating water tank-air ejector-ultrasonic device, and circulating wastewater. Sample analysis was performed by CODcr, T-N, T-P, and turbidity by the National Environmental Science Institute. Results - Experimental results show that it is most effective in removing odors when the frequency range of ultrasonic wave is 60~80 Khz and the output is 200 W. It showed that the concentration of complex odor dropped from a maximum of 14,422 times to a minimum of 120 times. Also, analysis of ammonia and hydrogen sulfide in specific odor substances has shown that they were reduced from 1.5 ppm to 0.4 ppm and from 0.6 ppm to 0.1 ppm, respectively. Conclusions - It is possible to shorten more than 12 hours in the treatment of micro-organisms. It can be seen that the processing time of odor after ultrasonic treatment in the pre-treatment facility is reduced by 25% when compared to the resultant micro-organisms after the chemical treatment, that is, the time of the bio-treatment of micro-organisms. Based on the results, it was confirmed that the pre-treatment method using the ultrasonic and the air ejector device of the experiment shows the effect of reducing the water pollutants and odor more effectively in a relatively short time than the conventional advanced oxidation method.

A fouling mitigation device for a wastewater heat recovery heat pump system using a bubbling fluidized bed with cleaning sponge balls (버블 유동층과 세정 볼을 이용한 폐수 열원 히트펌프 시스템 증발기의 관 외측 오염 저감 장치에 관한 연구)

  • Kim, Jong-Soo;Kim, Do-Bin;Kim, Jun-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.152-156
    • /
    • 2016
  • Wastewater heat recovery heat pump systems use heated wastewater from public baths or factories as the heat pump's heat source. Generally, this system uses a bare tube evaporator. In the heat transfer process from wastewater to refrigerant, thermal resistance is caused primarily by fouling deposits on the outside surface of tube. Fouling directly increases thermal resistance and decreases heat pump efficiency. Thus, it is desirable to eliminate fouling. In this study, we fabricated a fouling mitigation device using a bubbling fluidized bed with cleaning sponge balls in the wastewater bath. Experimental conditions were as follows: $20^{\circ}C$ cold-water temperature, $40^{\circ}C$ wastewater temperature, 100 L/h cold water flow rate, and $0.161m^2$ heat exchanger surface area. Experimental results showed that the thermal resistance of fouling decreased by 56% with the fluidized bed alone and by 86% with both the fluidized bed and cleaning sponge balls.

Experimental Study on Behavior of Green Water for Rectangular Structure (사각형 해양구조물의 청수현상 발생과정에 대한 실험적 연구)

  • Chae, Young Jun;Lee, Kang Nam;Jung, Kwang Hyo;Suh, Sung Bu;Lee, Jae Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.44-50
    • /
    • 2016
  • An experimental study was performed to investigate the behavior of green water on a structure with a rectangular cross section under wave conditions, along with the flow characteristics in bubbly water flow. An experiment was conducted in a two-dimensional wave flume using an acrylic model (1/125) of FPSO BW Pioneer operating in the Gulf of Mexico under its design wave condition. The occurrence of green water, including its development, in front of the model was captured using a high-speed Charge Coupled Device (CCD) camera with the shadowgraph technique. Using consecutive images, the generation procedure for green water on the model was divided into five phases: flip through, air entrapment, wave run-up, wave overturning, and water shipping. In addition, the distinct water elevations of the green water were defined as the height of flip through, height of splashing jet, and height of freeboard exceedance, and showed a linear relationship with the incoming wave height.

Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator (양방향 압전-유압 하이브리드 구동장치의 성능 시험)

  • Jin, Xiaolong;Ha, Ngocsan;Goo, Namseo;Bae, Byungwoon;Kim, Taeheun;Ko, Hanseo;Lee, Changseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.

Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve (자동 흙-함수특성곡선 시험장치 구축 및 활용)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • A new, automated apparatus is proposed for calculating the Soil-Water Characteristic Curve (SWCC), representing a simple and easily applied testing device for continuous measurements of the volumetric water content and suction of unsaturated soils. The use of this apparatus helps to avoid the errors that arise when performing experiments. Consequently, the apparatus provides greater accuracy in calculating the SWCC of unsaturated soils. The apparatus is composed of a pressure panel, flow cell, water reservoir, air bubble trap, balance, sample-preparation accessories, and measurement system, among other components. The air pressure can attain 300 kPa, and a general test can be completed in a short time. The apparatus can simply control the drying process and wetting process. The changes in volumetric water content that occur during the drying and wetting processes are shown directly in the SWRC program, in real time. As a case study, we performed an SWCC test of Joomunjin sand (75% relative density) to measure matric suction and volumetric water content during both the drying and wetting processes. The test revealed hysteresis behavior, whereby the water content on the wetting curve is always lower than that on the drying curve for a specific matric suction, during the wetting and drying processes. Based on the test results, SWCCs were estimated using the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The van Genuchten model performed best for the given soil conditions, as it yielded the highest coefficient of determination.