• Title/Summary/Keyword: air breathing engine

검색결과 57건 처리시간 0.023초

Development of the Calibration Method for the Boost Pressure and EGR Rate of a WGT Diesel Engine Using Mean Value Model (평균값 모델을 활용한 WGT 디젤엔진의 과급압력 및 EGR율 보정 방법 개발)

  • Chung, Jaewoo;Kim, Namho;Lim, Changhyun;Kim, Deokjin;Kim, Kiyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제24권3호
    • /
    • pp.319-329
    • /
    • 2016
  • Globally, many researchers have been trying to improve the fuel economy of a vehicle for satisfying future $CO_2$ regulation and minimizing air pollution problem. For the same background, diesel engine and vehicle system optimization using simulation models have been key technologies for the improvement of vehicle system efficiency. Therefore, in this study, calibration method for the air breathing system of a WGT diesel engine using mean value model has been composed for efficient engine and vehicle optimization simulation researches. And virtual WGT performances have been calculated for a 2 cylinder downsized diesel engine system. From these researches, the calibration method for the boost pressure and EGR rate of a virtual diesel engine related with WGT performances could be composed and some of technical issue related with downsized diesel engine could be investigated.

A Study on the Development of Fuel Metering Unit for Air Breathing Engine (공기흡입식 추진기관용 연료조절밸브시스템 개발에 관한 연구)

  • Lee, Do-Yun;Choi, Hyun-Young;Park, Jong-Seung;Koo, Ja-Yoeng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제8권4호
    • /
    • pp.152-158
    • /
    • 2005
  • In this paper, we have proposed a fuel metering unit of ai breathing engine. The proposed valve system consists of a constant pressure drop valve and a metering valve, which are controlled by servovalve. We carried out nonlinear and linear analysis, computer simulation and experimentation to find effects of some factors on system performance. Analysis and experimental results show a good agreement. It is also shown that the system stability is affected by pressure drop of metering valve and inlet pressure of injectors.

Concept Design on Heating System for Supersonic Air-Breathing Engine Test Facility (초음속 유도무기 지상 시험용 가열기 개념 설계)

  • Han Poong-Gyoo;NamKoung Hyuck-Joon;Lee Kyoung-Hoon;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.321-326
    • /
    • 2006
  • Vitiated air heater which could supply air of 700K and 6 bar was designed conceptually for the firing test on the ground of the air breathing propulsion engines. This vitiated air heater consists of premixer with air and excessive gas oxygen, mixing head, combustor with gas passage, convergent-divergent nozzle and diffuser. the fuel was natural gas and/or liquefied natural gas. Through computational fluid dynamics, each component of the air heater was analyzed and flame-holding after ignition was investigated.

  • PDF

A Study on Combustion Characteristics of the High Pressure Diesel Engine in Closed Cycle System (폐회로 시스템에서 고압 디젤엔진의 연소특성에 관한 연구)

  • 김인교;박신배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.457-463
    • /
    • 2002
  • The closed cycle diesel engine is used in a closed circuit system which has no air breathing. The working fluid as intake mixture are consisted of oxygen, argon and recirculated exhaust gas in order to obtain underwater or underground power sources. In the present study, the high pressure diesel engine which can be operated by the closed cycle system with high intake pressure for increasing the net power rate is designed. It has been carried out to investigate the combustion characteristics of high pressure diesel engine according to the power rate. The maximum cylinder pressure and heat release rate were investigated. Also, major experimental data such as specific fuel consumption rate, oxygen concentrations, fuel conversion efficiency, polytropic exponent, and IMEP were compared with low pressure diesel engine experimental data.

An Investigation on Operating Characteristics of the Closed Cycle System Using High Pressure Diesel Engine (고압 디젤엔진을 이용한 폐회로 시스템의 운전특성에 관한 고찰)

  • 김인교;박신배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제10권5호
    • /
    • pp.65-72
    • /
    • 2002
  • The closed cycle diesel system is operated in closed circuit system where there is non air breathing with working fluid consists of combination of oxygen, argon and recycled exhaust gas far obtaining underwater or underground power sources. Experimental apparatus using the MTU8V183SE92 high pressurized engine adapted for closed cycle running, capable of operating at the system pressure of maximum 5 bar is constructed with ACAP as data acquisition system in order to operate equally in the open cycle in surface or the closed cycle in submerged conditions. The general features and the characteristics of combustion of HP(high pressure) diesel engine, specially designed and manufactured only for CCDE, are investigated. The test results of performance of HP diesel engine in closed cycle system are presented with respect to power and boost pressure and compared with those of low pressure diesel engine. The oxygen concentration and specific heat ratio are investigated with its deviation

A Study on Stability Improvement of Fuel Metering Unit for Air Breathing Engine (공기흡입식 추진기관용 연료조절밸브 시스템 안정성 향상에 관한 연구)

  • 이도윤;박종승;최현영;구자용
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제34권9호
    • /
    • pp.76-81
    • /
    • 2006
  • This paper deals with a fuel metering unit (referred to as FMU) for air breathing engine. The proposed FMU consists of a constant pressure drop valve and a metering valve, both of which are controlled by servovalve. Linear analysis derived from a nonlinear mathematical model of FMU is carried out to find major parameters on the system performance. Numerical results using established model of FMU were in good agreement with the experimental results. It is also shown that the system stability is improved by reducing the constant pressure drop at metering valve and applying the triangular orifice to constant-pressure-drop valve through the simulation and experiments.

A Study on Fracture Behavior of Scaled Model for Ceramic Dome Port Cover (세라믹 돔포트 커버 상사모델의 파괴거동에 관한 연구)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Song, Kee-Hyuck;Yoon, Soo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제13권4호
    • /
    • pp.55-62
    • /
    • 2009
  • Fracture behavior of ceramic dome port cover on air breathing engine using liquid and solid fuel propulsion system was carried out in this study. Fracture characteristics was tested and estimated using scaled model of ceramic dome port cover by Shock tube. Fracture behavior was obtained by the fracture pressure from pressure sensor and observed the scattering phenomena of fracture specimen using high speed camera. Results obtained from this study can be used in the base data of dome port cover design for an air breathing engine.

Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • Matsunaga, Kensuke;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Okabe, Yoriji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.742-748
    • /
    • 2004
  • In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

  • PDF

Acoustical Characteristics of Air Filter in the Engine Intake System (엔진 흡기계 공기 여과기의 음향 특성)

  • Kang, J.H.;Ih, J.G
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.190-193
    • /
    • 2005
  • The air filter in engine intake system filters the dirt in the breathing air but also it attenuates the noise although the phenomenon has been regarded negligible. For the analysis of the acoustical performance of air filter, an acoustical model is suggested in this paper. The air filter consists of a porous filter element, which catches the particulate dirt, and a plastic filter box, which supports the filter element. Fibrous structure of the filter element is modeled as a micro-perforated panel using the flow resistivity and porosity. The pleated geometry of the filter element is modeled as two coupled ducts and a mathematical model is developed for the analysis of sound propagation. The filter box Is modeled as a rigid rectangular box. By combining two models, a 4-pole transfer matrix for the air filter is derived. The transmission loss calculated using the transfer matrix of the suggested model is compared with the measured data. Reasonably good agreement is observed. The result can be improved by considering the visco-thermal effect in modeling, in particular at a frequency range near the troughs of TL curve.

  • PDF

Experimental Study on a Rectangular Variable Intake for Space Planes

  • Kojima, T.;Taguchi, H.;Okai, K.;Futamura, H.;Maru, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.649-656
    • /
    • 2004
  • Hypersonic wind tunnel test of the rectangular variable geometry intake is performed. For realization of a Precooled turbojet engine, development of a hypersonic ramjet engine is planned. To investigate performance of the intake of the hypersonic ramjet engine, wind tunnel test is done with freestream Mach number of 5.1. The total pressure recovery was 18 % with 12.9 % of ramp bleed. Several reasons for low total pressure recovery are shown. Supersonic internal compression is not enough. Then, the throat Mach number is high (M2.61) and total pressure losses at the terminal shock is large. Supersonic flow at the throat and position of the terminal shock is sensitive to a difference of the second ramp's throat height and the third ramp's throat height. Flow separations at the second ramp's trailing edge and the third ramp's leading edge are seen those could result in the trigger of unstart. The seal mechanism between the ramps and the sidewalls is important.

  • PDF