• Title/Summary/Keyword: air breathing engine

Search Result 57, Processing Time 0.023 seconds

Analysis of Gross Thrust and Side Thrust of Air-Breathing Engine (공기 흡입 엔진의 총추력 및 측추력 분석)

  • Kim, Jeongwoo;Jung, Chihoon;Ahn, Dongchan;Lee, Kyujoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.572-582
    • /
    • 2017
  • It is definitely important to measure thrust during ground test when developing air-breathing engine, and in case of air-breathing engine, gross thrust should be calculated considering not only the measured thrust but also the force induced by the air flow of engine intake. Also, side thrust like yaw and pitch should be measured and analyzed using multi-component thrust measurement system. Engine performance was accurately evaluated by calculating the gross thrust of air breathing engine precisely which is analyzed from below serial procedure: labyrinth seal isolation, 1-axis gross thrust calculation, develop multi-component thrust measurement system, and side thrust analysis.

  • PDF

A Study on the Hypersonic Air-breathing Engine Ground Test Facility Composition and Characteristics (극초음속 공기흡입식 추진기관 지상 시험설비의 구성 및 특성에 관한 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.81-90
    • /
    • 2015
  • In order to know the characteristics of the hypersonic air-breahting engine, high altitude and Mach number ground test is necessary. Therefore, high pressure and high temperature condition should be simulated to do ground test of the hypersonic air-breathing engine. In this paper, the hypersonic air-breathing engine ground test facility of the Korea Aerospace Research Institute was introduced and the composition and characteristics were described.

Manufacturing technology of Next Generation High-Speed Air-Breathing Engines (차세대 초고속 공기흡입식 추진기관 제작기술)

  • Han, Poong-Gyoo;Oh, Myung-Hwan;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.435-436
    • /
    • 2008
  • The manufacturing technology used for next generation high-speed air-breathing engines, such as ramjet engine, scramjet engine and so on, was classified and reviewed to check up if pre-occupied manufacturing technology in Hyundai Rotem and other Korean companies in the field of liquid rocket engines, gas turbines and afterburners can be applied for fabricating next generation air-breathing engines.

  • PDF

The Gross Thrust Estimation Technique of Air-Breathing Engine (공기 흡입 엔진의 총추력 추정 기법)

  • Kim, Jeongwoo;Jung, Chihoon;Ahn, Dongchan;Lee, Kyujoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.97-108
    • /
    • 2018
  • It is definitely important to measure thrust during ground test when developing air-breathing engine, and in case of air-breathing engine, gross thrust should be calculated considering not only the measured thrust but also the force induced by the air flow of engine intake. Also, side thrust like yaw and pitch should be measured and analyzed using multi-component thrust measurement system. Engine performance was accurately evaluated by calculating the gross thrust of air breathing engine precisely which is analyzed from below serial procedure: labyrinth seal isolation, 1-axis gross thrust calculation, develop multi-component thrust measurement system, and side thrust analysis.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Model and component based modeling and simulation of a supersonic propulsion system (모델 및 구성품 기반 초음속 추진기관 실시간 모델링 및 시뮬레이션)

  • Choi, J.H.;Park, I.S.;Lee, J.Y.;Kim, J.H.;Kim, I.S.;Yoon, H.G.;Lim, J.S.;Kim, C.B.;Park, J.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.579-583
    • /
    • 2011
  • The component based propulsion modeling and simulation of an air-breathing engine such as ramjet and scramjet is studied. The simulation model has been realized considering the characteristics of the air-breathing engine which is composed of air intake, combustor and nozzle including engine controller and fuel supply system. To estimate the engine performance and to verify the engine controller, real time based Hardware in the Loop System simulating actual environment is constructed.

  • PDF

Numerical Simulation and Experiment on Supersonic Air-Breathing Laser-Spike Propulsion Vehicle (초음속 공기 흡입식 레이저 스파이크 추진 비행체에 관한 수치 해석 및 실험적 연구)

  • Kim Sukyum;Kim Young-Taek;Jeong In-Seock
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.57-61
    • /
    • 2004
  • As a kind of application of laser propulsion, air-breathing laser-spike engine can be designed for aircraft in atmospheric flight. Laser-spike engine generates thrust using the blast wave induced by laser energy instead of combustion process. And this engine use air as propellant, therefore, it need no on board propellant. For experimental study, supersonic wind tunnel and spark generator were used. Flow visualization was performed using 2-dimensional laser-spike engine model And numerical simulation of the corresponding case for the experiment was done and compared with experimental case. Detailed results will be discussed at the presentation.

  • PDF

Nonlinear Adaptive Velocity Controller Design for an Air-breathing Supersonic Engine

  • Park, Jung-Woo;Park, Ik-Soo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • This paper presents an approach on the design of a nonlinear controller to track a reference velocity for an air-breathing supersonic vehicle. The nonlinear control scheme involves an adaptation of propulsive and aerodynamic characteristics in the equations of motion. In this paper, the coefficients of given thrust and drag functions are estimated and they are used to approximate the equations of motion under varying flight conditions. The form of the function of propulsive thrust is extracted from a thrust database which is given by preliminary engine input/output performance analysis. The aerodynamic drag is approximated as a function of angle of attack and fin deflection. The nonlinear controller, designed by using the approximated nonlinear control model equations, provides engine fuel supply command to follow the desired velocity varying with time. On the other hand, the stabilization of altitude, separated from the velocity control scheme, is done by a classical altitude hold autopilot design. Finally, several simulations are performed in order to demonstrate the relevance of the controller design regarding the vehicle.

A Study on Fracture Characteristic of Ceramic Dome Using Shock Tube (충격파관을 이용한 세라믹 돔의 파괴 특성에 관한 연구)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Kwon, Sun-Guk;Song, Kee-Hyuck;Yoon, Su-Jin;Lee, Gi-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1274-1278
    • /
    • 2009
  • Fracture characteristics for plate and dome shapes of glass filled ceramics using shock tube were carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role as separated membrane between combustion and external air, and needs the frangible characteristics that the particles of fractured glass filled ceramics should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube compare with analytical method. The experimental apparatus consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens have the thickness of 3, 4.5 and 6mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

Doppler Profile Extraction to Air-Breathing Targets with PT-Waveform Received Signal and Target Tracking Information on a Ground Radar (지상레이다의 PT-파형 수신신호와 항공기 추적정보를 이용한 항공기 도플러 프로파일 추출)

  • Oh, Hyun-Seok;Kim, Soo-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2017
  • This paper has been shown for the extraction of Doppler signature from the radar signal for an air-breathing targets tracked in the ground radar. For the extractions, a Doppler resolution is confirmed from mathematical modeling of PT(pulse train) waveform. Doppler signatures of air-breathing target are varied to radar aspect angle of engine and are determined from physical parameter of jet engine. To confirm such Doppler signatures, the radar signal reflected from the air-breathing target is obtained by our radar signal storage. After this extraction, radar aspect angle of engine has estimated from tracking information. Relative differences of Doppler signatures to radar aspect angle of engine is verified from these results and Doppler profiles for radar target identification appliance are presented.