• Title/Summary/Keyword: air Gap

Search Result 1,449, Processing Time 0.03 seconds

Error Analysis for Microwave Permittivity Measurement using Post Resonator Method (Post Resonator 방법에 의한 마이크로파 유전율 측정에서의 오차 분석)

  • Cho, Mun-Seong;Lim, Donggun;Park, Jae-Hwan;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2012
  • Errors of relative permittivity calculation caused by the variation of sample aspect ratio (diameter/height) and measuring geometry were analyzed by computer simulation and measurement. Firstly, the $S_{21}$ spectrum of the sample (permittivity 38) was simulated in the post resonator measuring apparatus by HFSS simulation. Then, the relative permittivity was calculated from the $TE_{011}$ mode resonant frequency. The relative permittivity varied by ca. 0.3% with sample aspect ratio variation (D/H=0.8~1.6). The relative permittivity varied by ca. 1~10% when the 1~10% of air-gap was introduced in between the dielectric disk and upper conductor. All the simulation results showed consistent tendency with real measurement.

Electrical properties of n-ZnO/p-Si heterojunction photovoltaic devices

  • Kang, Ji Hoon;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.306.1-306.1
    • /
    • 2016
  • ZnO semiconductor material has been widely utilized in various applications in semiconductor device technology owing to its unique electrical and optical features. It is a promising as solar cell material, because of its low cost, n-type conductivity and wide direct band gap. In this work ZnO/Si heterojunctions were fabricated by using pulsed laser deposition. Vacuum chamber was evacuated to a base pressure of approximately $2{\times}10^{-6}Torr$. ZnO thin films were grown on p-Si (100) substrate at oxygen partial pressure from 5mTorr to 40mTorr. Growth temperature of ZnO thin films was set to 773K. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnO target, whose density of laser energy was $10J/cm^2$. Thickness of all the thin films of ZnO was about 300nm. The optical property was characterized by photoluminescence and crystallinity of ZnO was analyzed by X-ray diffraction. For fabrication ZnO/Si heterojunction diodes, indium metal and Al grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. Finally, current-voltage characteristics of the ZnO/Si structure were studied by using Keithly 2600. Under Air Mass 1.5 Global solar simulator with an irradiation intensity of $100mW/cm^2$, the electrical properties of ZnO/Si heterojunction photovoltaic devices were analyzed.

  • PDF

Performance Analysis of Double-Glazed Flat Plate Solar Collector with Cu-based Solar Thermal Absorber Surfaces

  • Lee, Jeong-Heon;Jeong, Da-Sol;Nam, Yeong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.1-157.1
    • /
    • 2016
  • In this work, we experimentally investigated the solar absorption performance of Cu-based scalable nanostructured surfaces and compared their performance with the conventional TiNOX. We fabricated Cu-based nanostructured surfaces with a controlled chemical oxidation process applicable to a large area or complex geometry. We optimized the process parameters including the chemical compounds, dipping time and process temperature. We conducted both lab-scale and outdoor experiments to characterize the conversion efficiency of each absorber surfaces with single and double glazing setup. Lab-scale experiment was conducted with $50mm{\times}50mm$ absorber sample with 1-sun condition (1kW/m2) using a solar simulator (PEC-L01) with measuring the temperature at the absorber plate, cover glass, air gap and ambient. From the lab-scale experiment, we obtained ${\sim}91^{\circ}C$ and $94^{\circ}C$ for CuO and TiNOX surfaces after 1 hr of solar illumination at single glazing, respectively. To measure the absorber performance at actual operating condition, outdoor experiment was also conducted using $110mm{\times}110mm$ absorber sample. We measured the solar flux with thermopile detector (919P-040-50). From outdoor experiment, we observed ${\sim}123^{\circ}C$ and $131^{\circ}C$ for CuO and TiNOX with 0.6 kW/m2 insolation at double glazing, respectively. We showed that the suggested nanostructured CuO solar absorber has near-equivalent collection efficiency compared with the state-of-the-art TiNOX surfaces even with much simpler manufacturing process that does not require an expensive equipment.

  • PDF

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

Low Conversion Loss and High Isolation 94 GHz MHEMT Mixer Using Micro-machined Ring Coupler (마이크로 머시닝 링 커플러를 사용한 낮은 변환 손실 및 높은 격리 특성의 94 GHz MHEMT 믹서)

  • An Dan;Kim Sung-Chan;Park Jung-Dong;Lee Mun-Kyo;Lee Bok-Hyung;Park Hyun-Chang;Shin Dong-Hoong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.6 s.348
    • /
    • pp.46-52
    • /
    • 2006
  • We report on a high performance 94 GHz MMIC resistive mixer using 70-nm metamorphic high electron mobility transistor (MHEMT) and micro-machined W-band ring coupler. A novel 3-dimensional structure of resistive mixer was proposed in this work, and the ring coupler with the surface micro-machined dielectric-supported air-gap microstrip line (DAMLs) structure was used for high LO-RF isolation. The fabricated mixer showed an excellent LO-RF isolation of -29.3 dB and a low conversion loss of 8.9 dB at 94 GHz. To our knowledge, compared to previously reported W-band mixers, the proposed MHEMT-based resistive mixer using micro-machined ring coupler has shown superior LO-RF isolation as well as similar conversion loss.

Operating Characteristics of LLC Series Resonant Converter Using A LLT Transformer (LLT 변압기 적용 LLC 직렬공진컨버터 동작특성)

  • Lee, Hyun-Kwan;Huh, Dong-Young;Lee, Gi-Sik;Chung, Bong-Geun;Kang, Sung-In;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.409-416
    • /
    • 2006
  • Operating Characteristics of LLC Series resonant converter with a LLT(Inductor-Inductor-Transformer) transformer is presented. LLT transformer used to combine the inductor and transformer into one unit has the increased leakage inductance in the primary and secondary due to the winging method and the use of the gaped core. The increased leakage inductance in the primary and secondary of LLT transformer can be impacted on the DC voltage gain characteristics of LLC series resonant converter. In the paper, DC gain characteristics and the experimental results of the LLC series resonant converter with a LLT transformer are verified on the simulation based on the theoretical analysis and the 400W experimental prototype.

Characteristics of the Femto-second Pulsed Laser Ablation according to Feed Velocity on the Invar Alloy (펨토초 레이저의 이송속도에 따른 Invar 합금의 어블레이션 특성)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.25-31
    • /
    • 2009
  • Femto-second laser ablation with the various feed velocities of the Invar alloy and the micro surface milling for the processing condition were studied. We used a regenerative amplified Ti:sapphire laser with a 1kHz repetition rate, 184fs pulse duration time and 785nm wavelength. Femto-second laser pulse was irradiated on the Invar alloy with the air blowing at the condition of various laser peak powers and feed velocities. An ablation characteristic according to feed velocity of the Invar alloy was appeared as the non-linear type at different zone of energy fluence. The micro surface milling of the Invar alloy using a mapping method was investigated. The optimal condition of micro surface milling was laser peak power of 22.8mW, feed velocity of 1 mm/s, beam gap of $1{\mu}m$. With the optimal processing condition, the fine rectangular shape without burr and thermal damage was achieved. Using the femto-second laser system, it demonstrates excellent tool for micro surface milling of the Invar alloy without heat effects and poor edge.

A Study on the Sealing Characteristics of O-rings in Gas Pressure Vessel (O-링이 장착된 가스압력용기의 밀봉특성에 관한 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.51-57
    • /
    • 2003
  • This paper presents the temperature distribution and deformation characteristics of O-ring groove geometry in which is strongly related the sealing performance of pressure vessels. A working gas in pressure vessel may be heated by a heater and pressurized by a gas compressor. Thus, the pressure vessel should keep high Pressure and temperature for a limited working period. For these operation conditions, the working gas in pressure vessels should not leak to the air by two O-rings with a rectangular groove. The FEM computed results indicate that the thermal and mechanical properties of metal sealing material is very important for stopping a leakage of hot gas in a vessel. Based on the results, high thermal conductive and low mechanical strength material is recommended as a metal sealing one. This may improve the sealing characteristics of O-ring sealing mechanism with a rectangular groove, which reduces the sealing gap between a flange and a cylinder and the width of O-ring groove.

  • PDF

Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

  • Ren, Siyuan;Xia, Chenyang;Liu, Limin;Wu, Xiaojie;Yu, Qiang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1278-1292
    • /
    • 2018
  • Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a $1.54m^2$ full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

A Study of Small Radiation Dosimeter by Using Microfilm and Carbon Elecrtode (마이크로필름과 탄소막 전극을 이용한 소형방사선측정기 개발에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2004
  • We developed very small parallel plate radiation detector by using our existing experience of mating radiation dosimeter and capability of analyzing characteristics of dosimeter. The radiation detector was consisted of microfilm and carbon electrode. The detector was parallel plate type of all-filled ionization chamber. The ionization chamber had been fabricated using an acrylic plate for the air cavity and carbon coated microfilm for electrical configuration. The alr gap between two electrodes was 0.48 mm. The diameters of collect electrode and guard electrode were 3.3 mm, 5 mm respectively. The diameter of high voltage electrode was 5 mm. Nominal sensitive volume of the chamber was 0.016 ㎤. The major parameters of the chamber characteristics such as leakage current, reproducibility, dose rate effect, and polarity effect were measured. The experimental results were as followings. Leakage current was 0.1 pA. Standard deviation of reproducibility was less than 0.1%. Dose rate effect was less than 1.5%. Polarity effect was less than 2.4%. These data were comparable to those of commercially available dosimetric system for QA-purpose. As the result, we found that the radiation detector consisting of the ionization chamber, microfilm and carbon electrode, was satisfactory for the purpose of the small field dosimetry in size and characteristics. In the future, We will try to refine the dosimeter for use in very small volume.

  • PDF