• 제목/요약/키워드: agricultural reservoirs

Search Result 452, Processing Time 0.021 seconds

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

Correlation-Analysis between Characteristic Factors of Watersheds and Peak flows in the Irrigation Reservoirs (농업용(農業用) 저수지(貯水池)의 유역(流域) 특성인자(特性因子)와 첨두유량(尖頭流量)과의 상관분석(相關分析))

  • Suh, Seung Duk;Song, Yi Ho;Kim, Hoal Gon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.35-40
    • /
    • 1992
  • The purpose of this study is to develop regression equations between peak flow and physical characteristic factors of watersheds. 112 irrigation reservoirs located in South Korea which are equal or larger than 200 has. in the irrigation area, are used in the analysis of this study. The results obtained from this study are as follows. 1. The results of correlation analysis of the relationships among the characteristic factors of the watersheds have been derived high significances. 2. Relationship between the peak flow and the simple correlation analysis of physical characteristic factors of the watersheds has been derived low significance. 3. The result of the multiple regression analysis between the peak flow and four physical characteristic factors of watershed such as watershed area, main stream length, average slope of main stream and elevation of reservoir are shown as the equation ; $Q_{100}=66.43A^{0.869}L^{-0.536}S^{0.456}Hs^{-0.122}$.(r=0.838)

  • PDF

A study on the application of the agricultural reservoir water level recognition model using CCTV image data (농업용 저수지 CCTV 영상자료 기반 수위 인식 모델 적용성 검토)

  • Kwon, Soon Ho;Ha, Changyong;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.245-259
    • /
    • 2023
  • The agricultural reservoir is a critical water supply system in South Korea, providing approximately 60% of the agricultural water demand. However, the reservoir faces several issues that jeopardize its efficient operation and management. To address this issues, we propose a novel deep-learning-based water level recognition model that uses CCTV image data to accurately estimate water levels in agricultural reservoirs. The model consists of three main parts: (1) dataset construction, (2) image segmentation using the U-Net algorithm, and (3) CCTV-based water level recognition using either CNN or ResNet. The model has been applied to two reservoirs G-reservoir and M-reservoir with observed CCTV image and water level time series data. The results show that the performance of the image segmentation model is superior, while the performance of the water level recognition model varies from 50 to 80% depending on water level classification criteria (i.e., classification guideline) and complexity of image data (i.e., variability of the image pixels). The performance of the model can be improved if more numbers of data can be collected.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Studies on the Stochastic Generation of Long Term Runoff (2) (장기유출량의 추계학적 모의 발생에 관한 연구 (II))

  • 이순혁;맹승진;박종국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.117-129
    • /
    • 1993
  • This study was conducted to get reasonable and abundant hydrological time series of monthly flows simulated by a best fitting stochastic simulation model for the establishment of rational design and the rationalization of management for agricultural hydraulic structures including reservoirs. Comparative analysis carried out for both statistical characteristics and synthetic monthly flows simulated by the multi-season first order Markov model based on Gamma distribution which is confirmed as good one in the first report of this study and by Harmonic synthetic model analyzed in this report for the six watersheds of Yeong San and Seom Jin river systems. 1.Arithmetic mean values of synthetic monthly flows simulated by Gamma distribution are much closer to the results of the observed data than those of Harmonic synthetic model in the applied watersheds. 2.In comparison with the coefficients of variation, index of fluctuation for monthly flows simulated by two kinds of synthetic models, those based on Gamma distribution are appeared closer to the observed data than those of Harmonic synthetic model both in Yeong San and Seom Jin river systems. 3.It was found that synthetic monthly flows based on Gamma distribution are considered to give better results than those of Harmonic synthetic model in the applied watersheds. 4.Continuation studies by comparison with other simulation techniques are to be desired for getting reasonable generation technique of synthetic monthly flows for the various river systems in Korea.

  • PDF

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

Correlation Analysis of Water Quality According to Land Use Types of Reservoir Watershed (유역 토지이용과 저수지 수질의 상관관계 분석)

  • Youn, Dong-Koun;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.614-619
    • /
    • 2005
  • The object of this study was to presented regression equations for obtaining simply and quickly values of water quality items, BOD, COD, T-N, and T-P. Regression equations obtained to analyze relationships for water quality items to land use types in agricultural reservoir watersheds. In order to derive regression equations, a multiple linear regression analysis was used in this studying reservoirs. In this regression analysis, a independent values used land used types and dependent values used BOD, COD, T-N, T-P values in water quality items. The results showed that numbers of regression equation ranging above 0.90 in a multiple correlation coefficient (MCC) was not found, ranging from 0.70 to 0.90 in the MCC was 6, ranging from 0.40 to 0.70 in the MCC was 20, and ranging from 0.20 to 0.40 in the MCC was 4. The results of this study can be used as a basic information for evaluating simply and quickly water quality for proposing and designing steps in water quality policy.

  • PDF

A Streamfiow Network Model for Daily Water Supply and Demands on Small Watershed (II) - Model Development - (중소유역의 일별 용수수급해석을 위한 하천망모형의 개발(II) -모형의 구성-)

  • 허유만;박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 1993
  • This paper describes the background and the development of a hydrologic network flow model. The model was development to simulate daily water demand and supply for selected stream reaches within a watershed, and used as a tool for evaluating, simulating, and planning a water resources system. The proposed network flow model considers daily runoff from subareas, various water demands, and diversion structures within each subarea. Daily streamflow at a reach is simulated after balancing the water demands from subareas. The lateral inflow from subareas is simulated using a modified tank model. Total water demands consist of the daily demands for agricultural, domestic, industrial, livestock, fishery, and environmental uses within a rural district. The return flow, diversions from sources and storage components such as reservoirs were also incorporated into the mode l . The developed model is a generalized version that may be applied to different combinations of river reaches for a given system. This may help potential users identify areas where water supply does not suffice the demands for different time horizons.

  • PDF

Assessment of Flood Impact on Downstream of Reservoir Group at Hwangryong River Watershed (황룡강 유역 저수지군 하류하천 영향평가)

  • Hwang, Soon-Ho;Kang, Moon-Seong;Kim, Ji-Hye;Song, Jung-Hun;Jun, Sang-Min;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Works for dam heightening plan have dual purposes: flood disaster prevention by securing additional storage volume and river ecosystem conservation by supplying stream maintenance flow. Now, the dam heightening project is in progress and there are 93 dam heightened reservoir. After the dam heightening project, 2.2 hundred million ton of flood control volume in reservoirs will be secured. Thus it is necessary to evaluate the effects of the dam heightening project on watershed hydrology and stream hydraulics, and resulting flood damages. This study was aimed to assess the impact of outflow from the dam heightened reservoir group on the Whangryong river design flood. The HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) model was used for estimating flood discharge, while HEC-5 (Hydrologic Engineering Center-5) was used for reservoir routing. This study analysed flood reduction effect on 100yr and 200yr return periods about the before and after heightening of agricultural dams. Based on the results of this study, the reduction of flood peak discharge at downstream of the reservoir group was estimated to be about 41% and 53% for 100yr and 200yr frequencies, respectively.

Application of a Non-stationary Frequency Analysis Method for Estimating Probable Precipitation in Korea (전국 확률강수량 산정을 위한 비정상성 빈도해석 기법의 적용)

  • Kim, Gwang-Seob;Lee, Gi-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.141-153
    • /
    • 2012
  • In this study, we estimated probable precipitation amounts at the target year (2020, 2030, 2040) of 55 weather stations in Korea using the 24 hour annual maximum precipitation data from 1973 through 2009 which should be useful for management of agricultural reservoirs. Not only trend tests but also non-stationary tests were performed and non-stationary frequency analysis were conducted to all of 55 sites. Gumbel distribution was chosen and probability weighted moment method was used to estimate model parameters. The behavior of the mean of extreme precipitation data, scale parameter, and location parameter were analyzed. The probable precipitation amount at the target year was estimated by a non-stationary frequency analysis using the linear regression analysis for the mean of extreme precipitation data, scale parameter, and location parameter. Overall results demonstrated that the probable precipitation amounts using the non-stationary frequency analysis were overestimated. There were large increase of the probable precipitation amounts of middle part of Korea and decrease at several sites in Southern part. The non-stationary frequency analysis using a linear model should be applicable to relatively short projection periods.