• Title/Summary/Keyword: agricultural operation

Search Result 1,075, Processing Time 0.032 seconds

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

Studies on Microbial Utilization of Agricultural Wastes (Part 8) Pilot Plant Operation for the Production of Cellulosic Single Cell Protein (농산폐자원의 미생물학적 이용에 관한 연구 (제8보) 섬유질단세포단상질 생산의 시험공장조업)

  • Ko, Young-Hee;Lee, Kye-Joon;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.119-125
    • /
    • 1977
  • The cultivation of C. flavigena KIST 321, capable of utilizing cellulosic resources, was carried out in a 500 L fermentor by the batch process and the productivities of cellulosic SCP have been investigated by establishing the optimal conditions and levels of cellulosic material and others as medium components. The highest yield of the cell mass in the batch process was atttained under tile conditions at 30$^{\circ}C$, pH 7.4, 0.4∼0.6 VVM of aeration and at 130 rpm of agitation. According to the material balance of cellulosic SCP production using tile pretreated rice straw as a carbon source, more than 25 percent of rice straw on the base of drying weight was recovered in the form of cell mass.

  • PDF

Oxygen Transfer Characteristics & Pure Oxygen Application Study on Circulation Flow Rate of the JLB (Jet Loop Bioreactor) (Jet 폭기 시스템의 순환유량에 따른 산소전달 특성 및 순산소 적용성 검토)

  • Park, Noh-Back;Song, Yong-Hyo;Pack, June-Gue;Jun, Hang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.896-901
    • /
    • 2009
  • In this study, in order to apply the air and pure oxygen in the Jet Loop Reactor (JLB) in which the oxygen transfer rate is high, differentiate the operation mode according to each air flowrate and liquid flowrate and investigate the oxygen transfer characteristic, an experiment was carried out. The oxygen concentration with the air flowrate ($Q_g$) and liquid flowrate ($Q_L$) was identical but the oxygen transfer coefficient ($K_L{\cdot}a$) is linear depending on degree of two factors. The width of an increase is small in $0.1min^{-1}$ when the air flowrate is 0.2 L/min with increasing the liquid flowrate. Whereas, the increment was exposed to be very high for $1.5min^{-1}$ when the air flowrate was 5 L/min. In the experiments using the pure oxygen, it was 30 mg/L of oxygen concentration finally and it was 3.5 times than using the air. But the time reached the saturated concentration was similar to using the air, and $K_L{\cdot}a$ was similar to using the air too. Analysis between two independent variable and oxygen transfer of the correlation is the same model like $K_L{\cdot}a={0.0161Q_L}^{1.5371}{Q_g}^{0.5433}$ using with coefficient non linear regression analysis. It was resulted that the liquid flowrate were approximately three times than air flowrate on effect to oxygen transfer rate.

Mapping of Cone Index for Precision Tillage (정밀 경운을 위한 원추지수 지도 작성)

  • Chong B. H.;Park Y. J.;Park H. K.;Park S. B.;Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.127-133
    • /
    • 2005
  • Precision tillage is designed to till lands variably according to their firmness. Therefore, it is necessary to measure soil firmness in fields and present it in a form with which the variable tillage on be performed. Such forms may be classified into two categories: sensor-based and map-based forms. The map-based approach appears to be inevitable until the technology develops high enough to secure the sensor-based approaches. The first step for map-based precision tillage may be to develop a tillage recommendation map. In this study, a tractor-mountable automatic soil firmness measurement system was developed to construct a cone index map. The system is comprised of three ASAE Standard cone penetrometers and a hydraulic unit for controlling operation of the penetrometers. The system is designed to conduct stop-and-go measurements in fields. The measurements from the three penetrometers are transferred to a microcomputer and the average cone index was calculated. This average cone index was taken as soil firmness of the location where the measurement was made. The cone indices thus determined were used to construct a cone index map using the ArcView software. The system also displays the soil penetration resistance, cone index and soil depth as the cone penetrates into the soil. The field performance of the system was evaluated and the cone index maps at different depths were also presented.

Development of a Hot Water Boiler System with a Rice Hull Furnace (왕겨 연소기(燃燒機)를 이용(利用)한 온수(溫水)보일러 시스템 개발(開發) (I) -실험적(實驗的) 연구(硏究)-)

  • Lee, Y.K.;Park, S.J.;Baek, P.K.;Noh, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.31-43
    • /
    • 1987
  • This study was performed to develop a hot water boiler system with small scale automatic rice hull furnace for the multi-purpose use in the farm. For the experiment a prototype hot water boiler system with rice hull furnace was fabricated, which was equipped with automatic hull feeder, igniter and ash removal device. Optimum operational conditions of the prototype: system were analyzed. The results arc summarized as follows. 1. The temperature measured right above the burning surface should be higher than $500^{\circ}C$ combustion. 2. The top zone of the combustion chamber was the most suitable location of the thermocouple to pick up the control temperature for the automatic operation of the rice hull furnace. 3. The content of carbon monoxide in the flue gas was increased with the filling height of burning material but it was less than 0.3 percent in volume in this experiment. When the filling height was expressed as the ratio of rice hull feed rate to the volume of the combustion chamber above the burning surface, the optimum ratio was about $150kg/m^3-h$. 4. The combustion efficiency of the prototype was higher than 95 percent when the feed rate was 1.1 to 2.3 kg/h and moisture content of rice hull was 22.4 percent (w.b.) or less. 5. It was estimated that the optimum operational conditions of the system were 1.3 to 2.0 kg/h in feed rate, 70 to 100 percent in excess air and 500 to $510^{\circ}C$ in control temperature. 6. The efficiency of coil heal exchanger increased with a decrease in feed rate of rice hull. When the rice hull feed rates were 1.1, 1.7 and 2.3 kg/h, the efficiencies of coil heat exchanger were about 34, 30 and 25 percent and heat transfer rates were 5.7, 7.6 and 8.8 MJ/h, respectively. When the flat plate heat exchanger was used in addition to the coil heat exchanger, the efficiency of the heat exchanger system increased to 48 percent.

  • PDF

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

Analysis of Spray Characteristics of Tractor-mounted Boom Sprayer for Precise Spraying

  • Kim, Ki-Duck;Lee, Hyeon-Seung;Hwang, Seok-Joon;Lee, Young-Joo;Nam, Ju-Seok;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.258-264
    • /
    • 2017
  • Purpose: This study determines the spray characteristics and effective spray width of a tractor-mounted commercial boom sprayer through experiments. Methods: Performance tests were conducted to investigate the spray characteristics of the nozzles on a commercial boom sprayer. The flow rate and spray width of a single nozzle were measured at three levels of spray pressure (0.5, 0.7, and 1.0 MPa) and spray height (15, 30, and 45 cm), respectively. The average value of three repetition tests was used as the representative value. A coefficient of variation (CV) was used as an index of spray uniformity, and the width that guarantees CV values of approximately 15% was determined as the effective spray width. The spray characteristics of the overall boom sprayer were derived analytically by superimposing the spray characteristics of a single nozzle. Results: The test results for a single nozzle showed that the spray width tended to increase as the spray height and spray pressure increased. The effective spray width for a single nozzle was the largest at a spray pressure of 1.0 MPa and spray height of 45 cm, which resulted in a coverage of 84 cm of width. The effective spray width for the entire boom sprayer was also the largest at the spray pressure of 1.0 MPa and spray height of 45 cm, with a magnitude of 424.5 cm. The chemical spraying work in an actual field was simulated by applying a spray width of 400 cm. As a result of the operation for three swaths, the CV value was less than 10% for 1,200 cm of the overall spray width, which meant that uniform application was achieved. Conclusions: It was reasonable to set the effective spray width of the boom sprayer used in this study to 400 cm.

Design and Application of Traffic Safety Technology in Chungcheong non-urban Region (충청권 비도심 지역의 교통안전기술 설계 및 적용)

  • Cho, Choong-Yeon;Kim, Yun-Sik;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.264-272
    • /
    • 2016
  • In previous research, we analyzed traffic accident characteristics in the Chungcheong region through factor analysis, cluster analysis, and a questionnaire using traffic accident analysis system data to enhance Korea's traffic safety. Based on the analysis results, we investigated the design and application of traffic safety technology in non-urban areas in this study. Three technologies are proposed to improve traffic safety facilities for the region: a recognition light at pedestrian crossing works, a recognition light on the road for the underprivileged in traffic works, and a safety LED sign for operation of agricultural machine works. Each technology complements the light pollution problem about snow removal and road safety when applied to existing facilities in the non-urban areas. Solar-based indigenous technology is expected to contribute to road safety in rural areas.

Development of Autonomous Combine Using DGPS and Machine Vision (DGPS와 기계시각을 이용한 자율주행 콤바인의 개발)

  • Cho, S. I.;Park, Y. S.;Choi, C. H.;Hwang, H.;Kim, M. L.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • A navigation system was developed for autonomous guidance of a combine. It consisted of a DGPS, a machine vision system, a gyro sensor and an ultrasonic sensor. For an autonomous operation of the combine, target points were determined at first. Secondly, heading angle and offset were calculated by comparing current positions obtained from the DGPS with the target points. Thirdly, the fuzzy controller decided steering angle by the fuzzy inference that took 3 inputs of heading angle, offset and distance to the bank around the rice field. Finally, the hydraulic system was actuated for the combine steering. In the case of the misbehavior of the DGPS, the machine vision system found the desired travel path. In this way, the combine traveled straight paths to the traget point and then turned to the next target point. The gyro sensor was used to check the turning angle. The autonomous combine traveled within 31.11cm deviation(RMS) on the straight paths and harvested up to 96% of the whole rice field. The field experiments proved a possibility of autonomous harvesting. Improvement of the DGPS accuracy should be studied further by compensation variations of combines attitude due to unevenness of the rice field.

  • PDF

Development of A Friction Type Garlic Separator (마찰식 박피마늘 선별기 개발)

  • Park, J.B.;Kim, J.T.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 1994
  • Both the wet and dry types of garlic peeling machines are being presently used in domestic garlic processing factory, but the dry type is more popular than the wet type because of higher peeling efficiency. The peeling efficiency of these machines is estimated 50 to 80%, depending on the difference in garlic varieties, physical properties and moisture content of garlic samples. If the peeling time is increased in order to improve the peeling efficiency, the damage on the surface of peeled garlic and the consumption of electric power are also increased. This study was carried out to solve these problems in garlic peeling operation and to obtain the optimun design factor for the friction type separator. The results are summarized as follows : 1. The average friction coefficients of peeled and unpeeled garlic samples were 0.91 and 0.51. respectively, for the acrylic plate, and 0.96 and 0.51, respectively, for the stainless plate. 2. For the inclined acrylic pipe with the pipe length 90 cm, the inclined angle $39^{\circ}$ and the pipe diameter 45-55 mm, the falling time of peeled garlic samples was 0.2 sec, faster than unpeeled garlic samples. 3. For the inclined stainless pipe with the pipe length 90 cm, the inclined angle $34^{\circ}$, $39^{\circ}$ and the pipe diameter pipe 35 mm, the falling time of peeled garlic samples was 0.7 sec, slower than that with the pipe diameter 47mm. 4. The stainless pipe with the pipe length 80~90 cm, the inclined angle $39^{\circ}{\sim}40^{\circ}$ and the pipe diameter 40~50 mm was the most suitable as the material of friction pipe. 5. Experimental garlic peeling machine is composed of garlic sample feeding device, friction stainless pipe and hopper. The peeling efficiency was 81 to 96%, and the separating capacity, 600 gr/min.

  • PDF