• 제목/요약/키워드: aglycone

Search Result 328, Processing Time 0.03 seconds

Composition and Quantitative Analysis of Stilbenoids in Mulberry (Morus alba L.) Leaves and Fruits with DAD/UV HPLC (DAD/UV HPLC를 이용한 뽕잎과 오디(Morus alba L.)에 함유된 Stilbenoids 조성 및 함량 분석)

  • Kim, Ji-Sun;Ha, Tae-Youl;Ahn, Ji-Yun;Kim, Hyun-Ku;Kim, Sun-A
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.124-128
    • /
    • 2008
  • This study was aimed to analyze the composition and to quantify the contents of stilbenoids in the leaves and fruits of Morus alba L. using high performance liquid chromatography with phodtodiode array detector and UV detector. Optimal wavelength for the detection of various stilbenoids such as resveratrol, piceatannol, rhapontigenin, astringin, pterostilbene, piceid, rhaponticin and vitisin A was screened by DAD detector and set to 308 nm. Seven kinds of stilbenoids except vitisin A were identified in fruits, while 5 kinds of stilbenoids in leaves. Total stilbenoids contents were $609.15{\pm}7.24$ mg/100 g d.w. in fruits and $188.57{\pm}1.70$ mg/100 g d.w in leaves. Stilbenoids contents in fruits were 3 times higher than those in leaves. Rhaponticin was the most profound stilbene, analyzed to $389.26{\pm}5.22$ mg/100 g d.w. (63.8% of total stilbenoids) in fruits and $99.17{\pm}2.79$ mg/100 g d.w. (52.5% of total stilbenoids) in leaves. Astringin and piceatannol were only detected in fruits and vitisin A was not detected. Contents of piceid and rhaponticin were higher than those of aglycone forms, rhapontigenin and resveratrol.

Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes

  • Kim, Sok-Ho;Na, Ji-Young;Song, Ki-Bbeum;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside $Rb_1$, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside $Rb_1$ related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside $Rb_1$ on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 ${\mu}M$ ginsenoside $Rb_1$ and/or 500 ${\mu}M$ hydrogen peroxide ($H_2O_2$) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside $Rb_1$ treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in $H_2O_2$-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside $Rb_1$, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside $Rb_1$ has potential for use as a therapeutic agent in OA patients.

Journal of Ginseng ResearchHighly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from Armillaria mellea mycelia

  • Kim, Min-Ji;Upadhyaya, Jitendra;Yoon, Min-Sun;Ryu, Nam Soo;Song, Young Eun;Park, Hee-Won;Kim, Young-Hoi;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.504-511
    • /
    • 2018
  • Background: The biological activities of ginseng saponins (ginsenosides) are associated with type, number, and position of sugar moieties linked to aglycone skeletons. Deglycosylated minor ginsenosides are known to be more biologically active than major ginsenosides. Accordingly, the deglycosylation of major ginsenosides can provide the multibioactive effects of ginsenosides. The purpose of this study was to transform ginsenoside Rb2, one of the protopanaxadiol-type major ginsenosides, into minor ginsenosides using ${\beta}$-glycosidase (BG-1) purified from Armillaria mellea mycelium. Methods: Ginsenoside Rb2 was hydrolyzed by using BG-1; the hydrolytic properties of Rb2 by BG-1 were also characterized. In addition, the influence of reaction conditions such as reaction time, pH, and temperature, and transformation pathways of Rb2, Rd, F2, compound O (C-O), and C-Y by treatment with BG-1 were investigated. Results: BG-1 first hydrolyzes 3-O-outer ${\beta}$-$\text\tiny{D}$-glucoside of Rb2, then 3-O-${\beta}$-$\text\tiny{D}$-glucoside of C-O into C-Y. C-Y was gradually converted into C-K with a prolonged reaction time, but the pathway of Rb2 ${\rightarrow}$ Rd ${\rightarrow}$ F2 ${\rightarrow}$ C-K was not observed. The optimum reaction conditions for C-Y and C-K formation from Rb2 by BG-1 were pH 4.0-4.5, temperature $45-60^{\circ}C$, and reaction time 72-96 h. Conclusion: ${\beta}$-Glycosidase purified from A. mellea mycelium can be efficiently used to transform Rb2 into C-Y and C-K. To our best knowledge, this is the first result of transformation from Rb2 into C-Y and C-K by basidiomycete mushroom enzyme.

The effects of Two Terpenoids, UA and ONA on Skin Barrier and Its Application

  • S. W. Lim;S. W. Jung;Kim, Bora;H. C. Ryoo;Lee, S. H.;S. K. Ahn
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.108-109
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol, prunol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ON A are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepatoprotective, anti-inflammatory, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. To clarify the effects of UA and ONA on skin barrier recovery, both flank skin of 8-12 weeks hairless mice were topically treated with samples (2mg/ml) after tape stripping, then measured recovery rate using TEWL on hairless mice. The recovery rate increased in UA and ONA treated groups at 6h more than 20% compared to vehicle treated group (p <0.05). For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to Vehicle group from 1 week without TEWL alteration (p<0.005). EM examination using Ru04 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA$\geq$UA>Vehicle). LM finding showed that stratum corneum was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Vehicle). Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber increasing by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory experiments were also confirmed in vivo findings. This result suggested that the effects of UA and ONA related to not only skin barrier but also collagen and elastic fibers. Taken together, UA and ONA can be relevant candidates to improve barrier function and pertinent agents for cosmetic applications.

  • PDF

A Chemical Study of the Saponins and Flavonoids of Dwarf Ginseng (Panax trifolius L.) and Its Comparison to Related Species in the Araliaceae (왜생삼 (Panax trifolius L.)의 사포닌과 프라보노이드의 화학적 연구 및 오가과에 속하는 유연종과의 성분 비교연구)

  • Lee Taikwang M.;Marderosian Ara Der
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.141-146
    • /
    • 1988
  • Dwarf ginseng (Panax trifolius L.) is a member of the ginseng family (Araliaceae). which is indigenous to North America and is distributed from Southern Canada to the Northern United States. In total. nine compounds were isolated from the leaves of Dwarf gineng. Of these. four were identified as flavonoids and five were found to be ginsenosides. Two of the flavonoids were identified to be kaempferol-3. 7-dirhamnoside and kaempferol-3-gluco-7-rhamnoside. Four of the ginsenosides were identified as notoginsenoside-Fe. ginsenoside-Rd. ginsenoside-Rc and $ginsenoside-Rb_1$ The common aglycone of these ginsenosides was shown to be (20S)-protopanaxadiol. The identification of flavonoids and ginsenosides from the root. stem. leaf. flower and fruit of Dwarf ginseng was detected by Two-Dimensional Thin-Layer Chromatography (2D-TLC) and High Performance Liquid Chromatography (HPLC). The quantitation of flavonoids and ginsenosides from the root. stem. leaf. flower and fruit of Dwarf ginseng and related species such as Korean gineng (Panax ginseng C.A. Meyer) and American ginseng (Panax quinquefolium L.) was analyzed by HPLC only. Three flavonoids (Kaempferol derivatives) labelled compound 1 $(10.8\%)$, compound 3 ($2.8\%$), and compound 4 ($8.4\%)$ were found in the root of Dwarf ginseng but not found in the roots of Korean ginseng and American ginseng. This is the first time that flavonoids have been found and identified in roots of the ginseng family (Araliaceae).

  • PDF

Isolation of Citrus Peel Flavonoid Bioconversion Microorganism and Inhibitory Effect on the Oxidative Damage in Pancreatic Beta Cells (진피 플라보노이드 생물전환 균주 분리 및 췌장 베타세포에 대한 산화적 손상 억제 효과)

  • Park, Chi-Deok;Jung, Hee-Kyung;Park, Chang-Ho;Jung, Yoo-Seok;Hong, Joo-Heon;Ko, Hee-Sun;Kang, Dong-Hee;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • In this study, the optimum conditions of fermentation were determined by isolating the microorganisms with the ability to bioconvert the Citrus peel flavonoid, and the effect of the fermented Citrus peel extract which was bioconverted on the oxidative damage of HIT-T15 cell was investigated. The Aureobasidium pullulans Y-12 was isolated and identified with the strains having bioconversion activity. The fermentation conditions for bioconversion activity were confirmed to be optimal when culturing for three days at $25^{\circ}C$, 150 rpm in a culture medium containing 5% Citrus peel power and 0.8% casitone. As a result of bioconversion, 32.8 mg/g and 21.5 mg/g of naringenin and hesperetin, which were aglycone flavones, were produced respectively. Also in the flavonoid content, it was confirmed that FCP produced 154.8 mg/g while CP produced 33.7 mg/g, thus producing more by approximately 4.6 times. As a result of treating FCP and CP after inducing the oxidative damage for HIT-T15 cell by treating the deoxy-D-ribose with $IC_{50}$ (38 mM) concentration, the surviving rate was recovered to 90% for FCP treatments in the 0.01 mg/mL concentration and for CP treatments in the 0.025 mg/mL concentration. Also in the insulin secretion rate, FCP treatments increased by 206% and CP treatments by 132% when treated in the 0.1 mg/mL concentration. As the bioconverted FCP can inhibit the oxidative damage of HIT-T15 cell in the low concentration, it was considered its usability as the functional material for prevention of the type 2 diabetes.

Fate of 14C - Carobofuran in Rice Plant and Paddy Soil (수도체(水稻體) 및 담수토양중(湛水土壤中) $^{14}C$-Carbofuran의 행적(行跡)에 관한 연구(硏究))

  • Lee, Young-Deuk;Lee, Kyung-Hwi;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.7-16
    • /
    • 1987
  • A study was undertaken to investigate the absorption, translocation and metabolism of carbofuran in rice paddies. Ring-3-$^{14}C-carbofuran$ applied onto the paddy soil surface was rapidly absorbed and translocated into rice plants. Within 2 days after treatment, it was observed that carbofuran reached shoot tips and accumulated. More than 15% of total radioactivity was recovered in rice plant from 3 to 20 days after treatment. In organic soluble fraction of rice plant extract, 3-hydroxycarbofuran was the major metabolite recording 43% and 4% of total organic soluble radioactivity in shoot and root at 20 days respectively. 3-Ketocarbofuran and phenolic metabolites including carbofuran phenol, 3-hydroxycarbofuran phenol and 3-ketocarbofuran phenol were also detected in the organic soluble fractions. Some glycosidic conjugates of carbofuran metabolites were found in water soluble fraction of rice plant extract and 3-hydroxycarbofuran was the most abundant aglycone. Radioactivity in paddy soil was rapidly decreased until 3 days after treatment and then maintained almost constant level. A significant portion (42∼56 %) of the total radioactivity remained in soil as nonextractable residue from 5 to 20 days after treatment. The nonextractable radioactivity was mainly located in soil organic matter distributing in humin, fulvic acid and humic acid fractions with the decreasing order. Evolution of $^{14}CO_2$ from ring cleavage of $3-^{14}C-carbofuran$ was negligible recording only 1.8% of total radioactivity during 20 days after treatment.

  • PDF

Comparison of Soyasapogenol A, B Concentrations in Soybean Seeds and Sprouts

  • Kang, Eun-Young;Kim, Seung-Hyun;Kim, Sun-Lim;Seo, Su-Hyun;Kim, Eun-Hye;Song, Hong-Keun;Ahn, Joung-Kuk;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.165-176
    • /
    • 2010
  • Soybean seeds contain many biologically active secondary metabolites, such as proteins, saponins, isoflavones, phytic acids, trypsin inhibitors and phytosterols. Among them, saponins in soybeans have attracted considerable interest because of their health benefits. Soyasaponin A and B are the most abundant types of saponins found in soybeans along with soyasapogenol (aglycone), which is a precursor of soyasaponin. The main purpose of this experiment was to determine the concentration of soyasapogenol in soybean seeds and sprouts as a function of seed size, usage, seed coat color and seed cotyledon color. The 79 Korean soybean varieties were cultivated at Yesan of Chungnam in 2006 for the analysis of soyasapogenol using HPLC with Evaporative Light Scattering Detection (ELSD). The total average concentration of soyasapogenol was $1313.52{\mu}g\;g^{-1}$ in soybean seeds and $1377.22{\mu}g\;g^{-1}$ in soybean sprouts. Soybean sprouts were about 5% higher than soybean seeds in average total soyasapogenol concentration. In the process of sprouting, the average soyasapogenol A content decreased by approximately 1.6%, but soyasapogenol B and total soyasapogenol increased by 8.31% and 4.88%, based on the content of soybean seeds. When classified according to the size of seeds, the total soyasapogenol concentration of soybean seeds were not significantly different (p<0.05) On average, small soybean seeds were increased by as much as $103.14{\mu}g\;g^{-1}$ in sprouting process. As a function of the use of the seeds, The total soyasapogenol in soybean seeds were significantly different (p<0.05). While, the soybean sprouts were not significant different (p<0.05). Altogether, sprout soybean seeds show the greatest change in content during the germination process. When seeds with different coat colors were compared, the total soyasapogenol concentration of soybean with yellow seed coats ($1357.30\mu g\;g^{1}$) was slightly higher than that of soybean with black ($1260.30{\mu}g\;g^{-1}$) or brown ($1263.62{\mu}g\;g^{-1}$) seed coats. For the color of the cotyledon, the total soyasapogenol concentration was significantly increased in green cotyledon during the germination and seedling process. The results of this study suggest the functional characteristics of soybeans through quantitative analysis of soyasapogenol. In addition, the concentration of soyasapogenol exhibited a change during the germination process, which was evaluated by the nutritional value of the soybean sprouts.

Protective Effects of Cellular Membrane and Component Analysis of Polygonum aviculare Extracts (마디풀 추출물의 세포 보호 효과 및 주성분 분석)

  • Park, Soo Nam;Kim, Min-Ji;Kim, Su Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • In this study, the antioxidative effects and component analysis of Polygonum aviculare (P. aviculare) extracts were investigated. The ethyl acetate and the aglycone fraction from P. aviculare extracts were more active than (+)-${\alpha}$-tocopherol and $\small{L}$-ascorbic acid, which are known as strong antioxidants for their antioxidative activity by the DPPH method and chemiluminescence assay. The cellular protective effects of fractions of P. aviculare on the rose-bengal sensitized photohemolysis of human erythrocytes, increased in a concentration dependent manner ($1-10{\mu}l$). In particular, the ethyl acetate fraction at a concentration of $10{\mu}l$ showed the most prominent protective effect among all the extracts (${\tau}_{50}$, 314.70 min). TLC and HPLC chromatogram of the ethyl acetate fraction of P. aviculare extracts revealed 3 main bands (PA8, PA5, PA6) and peaks (peak 1, peak 2, peak 3), which were identified as myricetin-3-O-rhamnoside (myricitrin, PA8, peak 1), quercetin-3-${\alpha}$-rhamnoside (quercitrin, PA6, peak 3) by LC/ESI-MS/MS and $^1H$-NMR respectively. These results indicate that fractions from P. aviculare could be applicable to new functional cosmetics as antioxidants.

Quality Characteristics of Bread Added with Germinated Soybean Powder (발아콩가루를 첨가한 식빵의 품질 특성)

  • Jung, Jin-Young;Kim, Woo-Jung;Chung, Hai-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1260-1266
    • /
    • 2006
  • Bread was prepared with five different levels of germinated soybean powder (0%, 4%, 8%, 12% and 16%) and the quality characteristics were investigated. Moisture content decreased, while protein, fat and ash content increased with increasing germinated soybean powder content. Addition of germinated soybean powder increased the weight, but decreased the height, volume and specific loaf volume of bread. The incorporation of germinated soybean powder lowered the lightness and yellowness of bread crust. Textural profile analysis showed that hardness, springiness, gumminess and brittleness increased with the increase of germinated soybean powder level, but no significant differences were observed in cohesiveness. Total isoflavone contents of bread increased after baking, and the increase of aglycones was particularly noted. From the results of sensory evaluation, recommended addition level for germinated soybean powder was considered to be 8% or less.