• 제목/요약/키워드: aglycone

검색결과 328건 처리시간 0.025초

Antioxidative Properties and Flavonoids Contents of Matured Citrus Peel Extracts

  • Shin, Dong-Bum;Lee, Dong-Woo;Yang, Ryung;Kim, Jin-Ah
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.357-362
    • /
    • 2006
  • We assessed various antioxidant activities, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis 3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) radical, and reactive oxygen species (ROS) radical scavenging effect, along with antioxidant capacity, of soybean oil with added Citrus species peel extracts (CPEs). These extract oils showed higher radical scavenging effects than grape fruit seed extract, the natural antioxidant agent, did. When CPEs were added to soybean oil, they showed peroxide value (POV) and acid value (AV) increasing inhibition effects. Furthermore, none of the CPEs showed any cytotoxicity over the tested concentration range of 0.01-100 ppm. The major flavonoid contents of Citrus junos, as determined by HPLC, were naringin ($7.5\;{\mu}g/mg$) and neohesperidin ($7.5\;{\mu}g/mg$), and those of Citrus unshiu were narirutin ($3.13\;{\mu}g/mg$) and hesperidin ($1.97\;{\mu}g/mg$). However, the aglycone form was not found. This study showed that CPEs might be a potent source of natural antioxidant, without any toxic effects.

A Structure-Function Relationship Exists for Ginsenosides in Reducing Cell Proliferation and Inducing Apoptosis in THP-1 Cells

  • Popovich David G.;Kitts David D.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.545-555
    • /
    • 2002
  • Ginsenosides of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol classification including the aglycones, PD, PI and ginsenosides Rh2, Rhl were shown to posses characteristic effects on proliferation of THP-l human leukaemia cells. A similar result was not apparent for ginsenoside Rg3 or dexamathasone. The concentration to inhibit $50\%$ of cells $(LC_{50})$ for PD, Rh2, PI and Rhl were 13 ${\mu}g/mL,\;15{\mu}g/mL,\;19{\mu}g/mL\;and\;210\;{\mu}g/mL$ respectively. Cell cycle analysis showed apoptosis with PD and PI treatment of THP-1 cells resulting in a build up of sub-G1 cells after 24, 48 and 72 hours of treatment. Rh2, and dexamathasone treatments also increased apoptotic cells after 24 hours, where as Rhl did not. After 48 and 72 hours Rh2, Rhl and dexamathasone similarly increased apoptosis, but these effects were significantly (P<0.05) lower than observed for both PD and PI treatments. Furthermore, treatments that produced the largest build up of apoptotic cells were also found to have the largest release of lactate dehydrogenase (LDH). It can be concluded from these studies that the presence of sugars to PD and PI aglycone structure reduces the potency to induce apoptosis, and alternately alter membrane integrity. These cytotoxic effects to THP-l cells were different from dexamethasone.

  • PDF

Modulation of Suppressive Activity of Lipopolysaccharide-Induced Nitric Oxide Production by Glycosidation of Flavonoids

  • Kwon, Yong-Soo;Kim, Sung-Soo;Sohn, Soon-Joo;Kong, Pil-Jae;Cheong, Il-Young;Kim, Chang-Min;Chun, Wan-Joo
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.751-756
    • /
    • 2004
  • Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.

Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride

  • Hahn, Young-Hee;Lee, Ho-Young
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.31-34
    • /
    • 2004
  • The electrochemical behavior of doxorubicin hydrochloride was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). From CV and SWV studies of doxorubicin hydrochloride in the acetate buffers of various pH values, it was found that protons were involved in the reduction of the antibiotic at the $H^+/e^$- ratio at one ( $\DeltaEp/pH =-53 ∼ -61 mV at 23^{\circ}C$), proposing the electrochemical reduction of the quinone moiety in its anthraquinone aglycone. Its electrochemical behavior was pseudo-reversible in the acetate buffer of pH 3.5 by exhibiting the well-defined single cathodic and anodic waves and the ratio of $lp^a/lp^c$ at approximately one over the scan rates of 10∼100 mV/s. Fast and sensitive SWV showing a single peak of doxorubicin has been applied for its quantitative analysis using an acetate buffer of pH 3.5. A linearity was obtained when the peak currents (lp) were plotted against concentrations of doxorubicin in the range of $5.0\times10^{-7} M∼1.0\times10^{-5}$M with a detection limit of $1.0\times10^{-7}$ M.

Influence of Glycyrrhizic Acid, Menthol and Their Supramolecular Compounds on the Functional Activity of Rat Mitochondria in in-vitro Experiments

  • Ettibaeva, L.A.;Abdurahmonova, U.K.;Matchanov, A.D.;Allanazarova, D.M.;Halmuratova, Z.T.
    • 대한화학회지
    • /
    • 제65권5호
    • /
    • pp.313-319
    • /
    • 2021
  • Menthol (M) is a cyclic monoterpenode and is a major component of essential oils. Menthol, along with menthol, isomenton, etc., gives taste and odor of the mint plant, and when it comes to menthol in general, L- or (-) -menthol is usually used. Included in pharmaceuticals, cosmetics and pesticides. It has antimicrobial, antibacterial, antioxidant properties. It is also known that the licorice plant (Glycyrrhiza Glabra L.) differs from other types of plants by its medicinal properties. For many years it has been used in folk medicine. Extraction of licorice root revealed up to 25% glycyrrhizinic acid (GA). Its aglycone - glycyrrhizic acid is notable for its structural similarity to the adrenal cortex hormones. Currently, GA and glycyrrhizic acid are widely used in medicine as a remedy for colds, allergies, viral diseases, tumors. The biological activity of menthol and GA-based supramolecular compounds has been poorly studied, and their effect on the functional parameters of rat liver mitochondria has been studied little. For this purpose, in our experiments, the effect of menthol (M), glycyrrhizinic acid (GA) and their supramolecular complexes obtained in different proportions on in vitro and in vivo studies on rat liver mitochondria was studied.

Improved Bioactivity of 3-O-β-ᴅ-Glucopyranosyl Platycosides in Biotransformed Platycodon grandiflorum Root Extract by Pectinase from Aspergillus aculeatus

  • Ju, Jung-Hun;Lee, Tae-Eui;Lee, Jin;Kim, Tae-Hun;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.847-854
    • /
    • 2021
  • Platycodon grandiflorum (balloon flower) root (Platycodi radix, PR) is used as a health supplement owing to its beneficial bioactive properties. In the present study, the anti-inflammatory, antioxidant, and whitening effects of deglycosylated platycosides (saponins) from PR biotransformed by pectinase from Aspergillus aculeatus were investigated. The bioactivities of the platycosides improved when the number of sugar moieties attached to the aglycone platycosides was decreased. The deglycosylated saponins exhibited higher lipoxygenase inhibitory activities (anti-inflammatory activities) than the precursor platycosides and the anti-inflammatory compound baicalein. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the pectinasetreated PR extract was higher than that of the non-treated PR extract. The trolox-equivalent antioxidant capacity (TEAC) assay showed improved values as the saponins were hydrolyzed. The tyrosinase inhibitory activities (whitening effects) of deglycosylated platycosides were higher than those of the precursor platycosides. Furthermore, 3-O-β-ᴅ-glucopyranosyl platycosides showed higher anti-inflammatory, antioxidant, and whitening activities than their precursor glycosylated platycosides. Therefore, 3-O-β-ᴅ-glucopyranosyl platycosides may improve the beneficial effects of nutritional supplements and cosmetic products.

Glycosylation of Semi-Synthetic Isoflavene Phenoxodiol with a Recombinant Glycosyltransferase from Micromonospora echinospora ATCC 27932

  • Seo, Minsuk;Seol, Yurin;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권5호
    • /
    • pp.657-662
    • /
    • 2022
  • Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.

Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways

  • Oh, So-Yeon;Kang, Jin Kyu;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권4호
    • /
    • pp.447-451
    • /
    • 2021
  • In this study, we discovered for the first time that linarin, a flavonoid compound, enhances melanin biosynthesis in B16F10 cells, and subsequently elucidated the underlying mechanism of linarin-induced melanogenesis. Linarin showed no cytotoxicity at a concentration of 42 μM and significantly increased intracellular tyrosinase activity and melanin content in B16F10 cells. Mechanistic analysis showed that linarin increased the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), and microphthalmia-associated transcription factor (MITF) that are related to melanogenesis. Moreover, linarin decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT). Finally, we evaluated the effect of the structure-activity relationship of linarin and its aglycone on melanogenesis. The results indicated that linarin enhances the expression of melanogenic proteins by activating MITF expression via the modulation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B signaling pathways in B16F10 cells, thereby enhancing melanogenesis.

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • 분석과학
    • /
    • 제34권4호
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria

  • Se Rin Choi;Hyunji Lee;Digar Singh;Donghyun Cho;Jin-Oh Chung;Jong-Hwa Roh;Wan-Gi Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1317-1328
    • /
    • 2023
  • Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.