• 제목/요약/키워드: aging properties

검색결과 1,335건 처리시간 0.026초

고전도성 부품용 Mg-RE-Zn계 합금의 미세조직 및 특성 (Microstructure and Properties of Mg-RE-Zn Alloys for High Conductivity Parts)

  • 김정민;김남훈
    • 한국주조공학회지
    • /
    • 제34권5호
    • /
    • pp.151-155
    • /
    • 2014
  • The relatively low conductivity of conventional Mg-Al alloys often limits their areas of application. Therefore, several attempts to develop new high-conductivity magnesium alloys have been made recently. In this research, A Ce-rich rare-earth (RE)material and zinc were added to magnesium which contained no aluminum. As the RE and Zn content were increased, both the hardness and tensile strength were gradually increased, despite the fact that the electrical conductivity decreased slightly. The effects of an aging treatment on the conductivity and mechanical properties of Mg-RE-Zn alloys were also investigated. The electrical conductivity did not change according to the heat treatment conditions; however, the mechanical properties could be enhanced by proper aging heat treatments.

Aging Properties of SBT Thin Films Prepared by RF Magnetron Sputtering Method

  • Cho, C.N.;Kim, J.S.;Oh, Y.C.;Shin, C.G.;Choi, W.S.;Kim, C.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.474-475
    • /
    • 2007
  • The $Sr_{0.8}Bi_{2.2}Ta_2O_9$(SBT) thin films are deposited on Pt-coated electrode(Pt/$TiO_2/SiO_2$/Si) using RF magnetron sputtering method. The aging properties of SBT capacitor with top electrodes represents a favorable properties in Pt electrode. The dielectric constant and leakage current density with Pt electrode is 340 and $6.81{\times}10^{-10}\;A/cm^2$ respectively. The maximum remanent polarization and the coercive electric field with Pt electrode are $12.40{\mu}C/cm^2$ and 30kV/cm respectively.

  • PDF

Hybrid(HTZ/${Al_2}{O_3}p$) MMC의 제작과 Aging에 따른 물성분석 (Fabrication of Hybrid(HTZ/${Al_2}{O_3}p$) MMCs and Properties Degradation due to Aging)

  • 남현욱;정성욱;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 1999
  • 본 연구에서는 AC8A 알루미늄 합금과 HTZ 단섬유 및 알루미나(A12O3) 입자(particle)를 이용하여 HTZ 및 혼합 금속복합재료를 개발하고 정하중 시험을 통하여 개발된 재료의 상온 및 고온 기계적 물성을 규명하였으며, 개발된 금속복합재료가 고온에 노출되어 있을 경우 발생하는 aging에 의한 재료의 물성 변화를 분석하였다.

  • PDF

Inconel 718 합금의 시효열처리가 기계적 성질에 미치는 영향 (Effect of Aging Heat Treatment on the Mechanical Properties in Inconel 718 Alloy)

  • 강희재;김정민;지성환;성지현;김영희;성장현;전언찬
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.271-277
    • /
    • 2013
  • Inconel 718 super alloy was aging heat treated at the temperature range from $675^{\circ}C$ to $785^{\circ}C$ for 5~40 hours after solution annealing at $1025^{\circ}C$ for 1 hour. The aging treated specimens were investigated microstructure, mechanical properties and thermal expansion/contraction. Precipitates appeared for a long time aging treatment were niobium carbide and also ${\gamma}^{\prime}$ phase. For the aging treatment time of 10 hours, the changes in strength and hardness with increasing aging treatment temperature showed the maximum value at the temperature of $725^{\circ}C$. This maximum value is to be related with the precipitation of ${\gamma}^{\prime}$ and ${\gamma}^{{\prime}{\prime}}$ phases. The decrease in strength, elongation and hardness during long time aging at $725^{\circ}C$ were thought to be induced from the coarsening of the grain size and the transformation of ${\gamma}^{{\prime}{\prime}}$ phase to ${\gamma}^{\prime}$ phase. For the specimens treated for 10 hours, impact energy showed constant value of ~105 J with increasing the aging temperature, however this value continuously decreased with elapsing time at the aging temperature of $725^{\circ}C$. It was found that the decrease in impact value was induced from the coarsening of grain size and the carbide coarsening. The coefficient of thermal expansion of aging treated Inconel 718 alloy increased with raising test temperature, and the coefficient was appeared $11.57{\sim}12.09{\mu}m/m{\cdot}^{\circ}C$ and $14.28{\sim}14.39{\mu}m/m{\cdot}^{\circ}C$, respectively, after heating to $150^{\circ}C$ and $450^{\circ}C$.

5083 Al합금 용접재의 조직 및 저온 인장성질메 미치는 시효처리의 영향 (Effect of Aging Treatment on the Microstructure and Low Temperature Tensile Properties in 5083 Aluminum Alloy Weldments)

  • 이태청;이해우;주동원;이준희;성장현
    • 열처리공학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The microstructural characteristics and low temperature tensile properties between $25^{\circ}C$ and $-196^{\circ}C$ for as-welded and age hardened specimen by using Al 5083-H321 for base metal, 5083-5356 and 5083-4043 weldments have been investigated. The hardness of 5083-5356 weldment decreases with aging treatment, whereas the weld region of 5083-4043 weldment shows remarkable increase in hardness after aging due to the precipitation of fine Si particle at the grain boundaries and interiors. Low temperature tensile properties of 5083 AI base metal, 5083-5356 and 5083-4043 weldments appear to be the increment of tensile strengths and elongations at the room temperature and $-196^{\circ}C$, while the decrement of tensile properties around $-50^{\circ}C$ is shown. Through the observation of fine serration to fracture in the stress-strain curve and tensile fractography, the increment of localized deformation leading to promote the neck initiation and the increment of the dimple size cause to decrease in tensile strengths and elongations around $-50^{\circ}C$. For the tensile specimen of the 5083 base metal, 5083-5356 and 5083-4043 weldments, the reason to increase in elongation after solution and aging treatment is the diminishment of fine pit, the resolution of Mg into the matrix and the spheridization of the eutectic Si.

  • PDF

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • 제59권2호
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

Varistor Properties and Aging Behavior of V/Mn/Co/ La/Dy Co-doped Zinc Oxide Ceramics Modified with Various Additives

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.284-289
    • /
    • 2014
  • The effects of additives (Nb, Bi and Cr) on the microstructure, varistor properties, and aging behavior of V/Mn/Co/ La/Dy co-doped zinc oxide ceramics were systematically investigated. An analysis of the microstructure showed that all of the ceramics that were modified with various additives were composed of zinc oxide grain as the main phase, and secondary phases such as $Zn_3(VO_4)_2$, $ZnV_2O_4$, and $DyVO_4$. The $Bi_2O_3$-modified samples exhibited the lowest density, the $Nb_2O_5$-modified sample exhibited the largest average grain size, and the $Cr_2O_3$-modified samples exhibited the highest breakdown field. All additives improved the non-ohmic coefficient (${\alpha}$) by either a small or a large margin, and in particular an $Nb_2O_5$ additive noticeably increased the non-ohmic coefficient to be as large as 36. The $Bi_2O_3$-modified samples exhibited the highest stability with variation rates for the breakdown field and for the non-ohmic coefficient (${\alpha}$) of -1.2% and -26.3%, respectively, after application of a DC accelerated aging stress of 0.85 EB/$85^{\circ}C$/24 h.

조림묘목 mulching mat 제조용 base paper의 물리적 특성 연구 (Studies on the Physical Properties of Base Paper for the Manufacture of Mulching Mat for Afforestation Seedling)

  • 김형진;오동근;유영정
    • 펄프종이기술
    • /
    • 제41권1호
    • /
    • pp.37-43
    • /
    • 2009
  • In this study, the physical properties of base paper for the manufacture of mulching mat for afforestation seedling were investigated. The base paper for mulching mat was prepared by stock conditions of PAE and AKD addition into the screened slurry of KOCC for the strengthening effects of wet tensile and burst strength. The optimum additions of PAE and AKD were considered at 2% and 0.5%, respectively. The accelerated aging by ISO 5630-1 and wet heat aging method under hot water for 2 kinds of commercial mulching and wet strength paper were compared with the base paper prepared for mulching mat manufacture. The accelerated aging test for the base paper prepared for mulching mat manufacture resulted in the same tendency of physical properties as two kinds of commercial products. However, the results of wet heat aging test under hot water indicated that the physical strength for base paper prepared was much higher than others. In addition, the opacity behavior for base paper prepared was enough effects to obstruct weeds growth by isolating transmission of sunlight.

프로젝션 용접 전극을 위한 시효경화성 Cu-2.0wt%Be 합금의 미세조직과 기계적성질 (Microstructures and Mechanical Properties of Age Hardenable Cu-2.0wt%Be Alloy for Projection Welding Electrode)

  • 김광수;김진용
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.468-474
    • /
    • 2015
  • Evaluations of the microstructure and mechanical properties of age hardenable Cu-2.0wt%Be alloy are performed in order to determine whether it can be used as a welding electrode for projection welding. The microstructure examinations, hardness measurements, and tensile tests of selective aging conditions are conducted. The results indicate that the aging treatment with the fine-grained microstructure exhibits better hardness and high tensile properties than those of the coarse-grained microstructure. The highest hardness value and high tensile strength are obtained from the aged condition of $300^{\circ}C$ for 360 min due to the presence of the metastable ${\dot{\gamma}}$ precipitates on the grain boundaries. The values of the highest hardness and tensile strength are measured as 374 Hv and 1236.2 MPa, respectively. The metastable ${\dot{\gamma}}$ precipitates are transferred to the equilibrium ${\gamma}$ precipitates due to the over-aged treatment. The presence of the ${\gamma}$ precipitates appears as nodule-like precipitates decorated around the grain boundaries. The welding electrode with the best aging treated condition exhibits better welding performance for electrodes than those of electrodes used previously.

비정질 $Fe_{78}B_{13}Si_9$ 합금의 자기적 특성의 경년 열화 (Aging Effect of Magnetic Properties in Amorphous $Fe_{78}B_{13}Si_9$ Alloy)

  • 김기욱;민복기;송재성;홍진완;조현진;이동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1988년도 춘계학술대회 논문집
    • /
    • pp.49-51
    • /
    • 1988
  • The heat treatment condition and aging behavior of melt spun amorphous $Fe_{78}B_{13}Si_9$(Metglas 26058-2) were studied with investigating its magnetic properties, i.e., Br, $B_l$, Hc. The optimum heat treatment condition was $400^{\circ}C$, 1 hour under the external field of 200e, and aging was due to the surface oxidation and the appearance of local CSRO (chemical short lange order) with time and temperature. In addition. we investigated the effects of the thickness of the amorphous ribbons on the magnetic properties and aging effect of them.

  • PDF