• Title/Summary/Keyword: aging of concrete

Search Result 277, Processing Time 0.031 seconds

Effect of Curing Temperature and Aging on the Mechanical Properties of Concrete (II) -Evaluation of Prediction Models- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(II) -예측 모델식을 중심으로-)

  • 한상훈;김진근;양은익
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2000
  • In paper I, the relationships between compressive strength and splitting tensile strength or modulus of elasticity were proposed. In this paper, new prediction model is investigated from estimating splitting tensile strength and modulus of elasticity with curing temperature and aging without compressive strength. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values of paper I. To evaluate in-situ applicability of the model, strength and modulus of elasticity tested with variable temperatures are estimated by the prediction model. The prediction model reasonably estimates the strength and the modulus of elasticity of type I and V cement concretes tested in paper I and experimental results with variable temperature tested in this paper.

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

ASSESSMENT OF PROPERTIES AND DURABILITY OF FLY ASH CONCRETE USED IN KOREAN NUCLEAR POWER PLANTS

  • Cho, Myung-Sug;Noh, Jae-Myoung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-342
    • /
    • 2012
  • Since the opening of the Shin-Kori #1,2 in 2005, fly ash mixed concrete has been used for NPP concrete structures under construction in Korea with the aim of preventing aging and improving durability. In this paper, the quality suitability of fly ash manufactured in Korea is assessed and the basic physical properties of fly ash mixed concrete and its durability against primary causes of aging are verified through experimental methods. Because of the internal structure filling effect from the pozzolanic reaction of fly ash and the resulting improvements in mechanical performance in such areas as strength and salt damage resistance, the durability of fly ash mixed concrete is shown to be superior. It is judged that this result can be applied in measures not only for improving the safety of NPP structures in operation in Korea but also for implementing effective structure life management should extending the life of structures be needed in the future.

Effect of Curing Conditions on the Characteristics of Chloride Ion Diffusion in Concrete (콘크리트의 염소이온 확산특성에 미치는 양생조건의 영향)

  • 임병탁;배수호;정영수;심은철;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.715-720
    • /
    • 2003
  • The chief factors for the penetration and diffusion of chloride ions in concrete are water-cement ratio(W/C), aging, curing conditions, chloride ions concentration of given environment., wet and dry conditions and etc. In this study, of these factors effect of curing conditions such as standard and outdoor curing on the characteristics of chloride ions diffusion in concrete were researched when environmental factors for the penetration and diffusion of chloride ions were constant. For this purpose, the voltages passing through the diffusion cell were measured by using accelerated test method using potential difference, and then diffusion coefficients of chloride ions by using Andrade's method were estimated for 44%, 49.5% and 60% of w/c, respectively. As a result., according to curing conditions correlation among diffusion coefficients of chloride ions, W/C and aging were concluded through multiple regression model.

  • PDF

Durability Characteristics of Cellulose Fiber Reinforced Cement Composite (셀룰로우스 섬유 보강 시멘트 복합체의 내구성에 관한 연구)

  • 원종필;문제길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.1-6
    • /
    • 1996
  • Cellulose fiber reinforced cement composites manufactured by the slurry-dewatering process have found broad applications in thin cement products as replacement for asbestos cement. This paper focuses on the durability characteristics of these composites under different aging conditions. The effects of wetting-drying and freezing-thaw cycles, carbonation, and exposure to hot and humid environments on the structure and properties of cellulose fiber-cement composites were investigated. The predominant mechanisms of aging in the composites were identified through investigation of structure-property relationships. Measures to control these aging mechanisms were diversed and evaluated. Refined cellulose fiber-cement composites are shown to possess excellent durability characteristics under the effects of various aging processes.

  • PDF

Effect of Temperature and Aging on the Relationship between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.445-450
    • /
    • 2001
  • The paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model equations are proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperature of 10, 23, and 50 $^{\circ}C$. Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus, which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The proposed relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type, temperature, and aging.

  • PDF

The Properties of Steel Slag Aggregate Treated with Aging Process in Concrete (에이징 처리한 콘크리트용 제강슬래그 골재의 품질)

  • 문한영;유정훈;천승환;백우열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, we evaluated the suitability of steel slag(is divided with electric arc furnace slag and converter slag) as concrete aggregate by measuring physical and chemical characteristics of it. The steel slag mainly contains SiO$_2$ and CaO as the chemical composition. The reaction with water and a little of free CaO in the slag causes slag's volume to expand. Therefore, we used several aging methods in order to decrease the characteristics of slag volume expansion. The physical properties of steel slag aggregate are researched and then the strength of concrete with the steel slag aggregate is measured.

  • PDF

Development of the Preventing Aging Technology Using Silicate Type Penetration Reinforcing Agent (실리케이트계열의 표면침투보강재를 이용한 열화방지기술개발)

  • Kim, Do-Gyeum;Cho, Myeng-Suk;Song, Young-Chul;Ryu, Gum-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.313-316
    • /
    • 2006
  • The most serious cause of deterioration in the concrete structures is reinforcing corrosion due to the chloride attack and carbonation. Therefore, it is needed to protect durability and performance according to the appropriate materials and methods in the concrete structures. In general, several types of polymer and silicate are used as protecting deterioration agents of concrete structures, but these agents have many problems because of low durability and properties. The object of this study is to develop a preventing aging technology. The work involves the development of silicate type penetration reinforcing agent.

  • PDF

A Fundamental Study on the Converter Slag Coarse Aggregate Used in Concrete (전로슬래그 굵은골재를 콘크리트용으로 사용하기 위한 기초적 연구)

  • 문한영;유정훈;정호섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.233-236
    • /
    • 1999
  • In this paper, we carried out fundamental experiments to use the steel manufacturing slag as a concrete aggregate. Generally there are two types of slag, the blast-furnace slag and the steel manufacturing slag. The latter is classified by the difference of manufacturing method of steel into the convertor slag and the electric-furnace slag. The steel manufacturing slag mainly contains SiO2 and CaO as the chmical composition. The reaction with water and a little of free CaO in the steel manufacturing slag makes the expansion of volume change. Therefore, we primarily investigated physical properties, expansion mechanism, pH value, aging effects and aging methods in the steel manufacturing slag. Then compressive strength of concrete with steel slag aggregate is measured.

  • PDF

Evaluation Technique of Concrete Strength Using Impact-Resonance and Combined Method (충격공진법 및 복합법을 이용한 콘크리트의 강도 평가 기법)

  • 이광명;이회근;김동수;김지상
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.157-167
    • /
    • 1999
  • Among several non-destructive testing methods, ultrasonic pulse velocity method and rebound index method have been widely used for the evaluation of concrete strength. However, such methods might not provide accurate estimated results since factors influencing the relationship between strength and either ultrasonic pulse velocity or rebound index are not considered. In this paper, the evaluation method of concrete strength using rod-wave velocity measured by impact-resonance method is proposed. A basic equation is obtained by the linear regression of velocity vs, strength data at specific age and then, aging factor is employed in the equation to consider the difference of the increasing rate between wave velocity and strength. Strengths predicted by the proposed equation agree well with test results. Furthermore, the combined method of rod-wave velocity and rebound index is proposed.