• Title/Summary/Keyword: aging behavior

Search Result 616, Processing Time 0.029 seconds

Effect of R Phase Formation on the Mechanical Properties of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel (25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 R상의 영향)

  • Lee, Byung-Chan;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.401-406
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effects on the mechanical properties of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The R-phase was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging. It was transformed into the ${\sigma}$-phase with an increase of the aging time. The ferrite phase was decomposed into a new austenite(${\gamma}_2$)phase and the ${\sigma}$-phase by an aging treatment. The R phase was an intermetallic compound showing higher molybdenum and tungsten concentrations than the matrix and also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. In the initial stage of aging, precipitation of the R-phase did not change the hardness, the strength and the elongation. The hardness and the strength increased upon a longer aging time, but the elongation rapidly decreased. These results show that the R-phase did not significantly affect the hardness and the strength, though it did influence the elongation.

Space Charge Behavior of Oil-Impregnated Paper Insulation Aging at AC-DC Combined Voltages

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.635-642
    • /
    • 2014
  • The space charge behaviors of oil-paper insulation affect the stability and security of oil-filled converter transformers of traditional and new energies. This paper presents the results of the electrical aging of oil-impregnated paper under AC-DC combined voltages by the pulsed electro-acoustic technique. Data mining and feature extractions were performed on the influence of electrical aging on charge dynamics based on the experiment results in the first stage. Characteristic parameters such as total charge injection and apparent charge mobility were calculated. The influences of electrical aging on the trap energy distribution of an oil-paper insulation system were analyzed and discussed. Longer electrical aging time would increase the depth and energy density of charge trap, which decelerates the apparent charge mobility and increases the probability of hot electron formation. This mechanism would accelerate damage to the cellulose and the formation of discharge channels, enhance the acceleration of the electric field distortion, and shorten insulation lifetime under AC-DC combined voltages.

Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn (Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성)

  • Lee Jae Won;Lee Back-Hee;Lee Kyu Hwan;Kim Young Do
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

Effect of W Substitution on the Precipitation Behavior of χ and σ Phase in Super Duplex Stainless Steels (슈퍼 2상 스테인리스강에서 χ와 σ상의 석출거동에 미치는 W치환의 영향)

  • Han, Huyn-Sung;Kim, Seong-Hwi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.200-206
    • /
    • 2016
  • This study was carried out to investigate the effect of W substitution on the precipitation behavior of ${\chi}$ and ${\sigma}$ phases in super duplex stainless steel. The ${\chi}$ phase was precipitated at the interface of ferrite / austenite phases and inside the ferrite phase at the initial stage of aging. With an increase in the aging time, the volume fraction of the ${\chi}$ phase increased, and then decreased with the transformation from the ${\chi}$ phase to the ${\sigma}$ phase. The ${\sigma}$ phase was precipitated later than the ${\chi}$ phase, and the volume fraction of x phase increased with the increase in the aging time. The ferrite phase was decomposed into the new austenite (${\gamma}2$) and ${\sigma}$ phases by aging treatment. The decomposition of the ferrite phase into the ${\gamma}2$ and ${\sigma}$ phases was retarded by W substitution for Mo. The volume fraction of the ${\chi}$ phase increased and that of the ${\sigma}$ phase decreased due to W substitution. The ${\chi}$ and ${\sigma}$ phases were intermetallic compounds, which had lower nickel concentration, and higher chromium, molybdenum, and tungsten concentrations. The ${\chi}$ phase has higher molybdenum and tungsten concentrations than those of the ${\sigma}$ phase. The amounts of chromium and nickel in the ${\chi}$ and ${\sigma}$ phases did not change, but these phases have higher concentrations of molybdenum and tungsten due to W substitution for Mo.

Effect of Sintering Temperature on Electrical and Dielectric Behavior of Pr6O1-Based ZnO Varistors with DC Accelerated Aging Stress (Pr6O1계 ZnO 바리스터의 DC 가속열화 스트레스에 따른 전기적, 유전적 거동에 미치는 소결온도의 영향)

  • 남춘우;정영철;김향숙
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.244-252
    • /
    • 2002
  • The electrical and dielectric behavior fort DC accelerated aging stress of P $r_{6}$ $O_{11}$-based Zno varistors cnsisting of ZnO-P $r_{6}$ $O_{11}$-CoO-C $r_2$ $O_3$-E $r_2$ $O_3$ were investigated with sintering temperature in the range of 1325~1345$^{\circ}C$. The varistor ceramics with increasing sintering temperature were more densified. A more densified varistors leaded to high stability for DC accelerated aging stress. Furthermore, the stability for DC accelerated aging stress was increased with the leakage current and dtan $\delta$/dV decreasing in order of 1325longrightarrow1335longrightarrow1345longrightarrow134$0^{\circ}C$ in sintering temperature. It was found that the stability for DC stress is affected more greatly by the leakage current and dtan $\delta$/dV than the densification. It is considered that the stability of varistors for DC stress can be estimated by considering the factors, such as the densification, leakage current, and dtan $\delta$/dV. As a result, the varistor sintered at 134$0^{\circ}C$ exhibited the highest stability, with %$\Delta$ $V_{lmA}$=-1.54%, %$\Delta$$\alpha$=-2.49%, %$\Delta$ $I_{\ell}$=+240.68%, 5%$\Delta$tan$\delta$=+29.96%.96%.96%.%.

Characteristics of Undrained Cyclic Shear Behavior for the Nak-dong River Sand Due to the Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 반복전단거동 특성)

  • Kim Dae-Man;Kim Young-Su;Jung Sung-Gwan;Seo In-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.13-26
    • /
    • 2005
  • It was known that the aging effect of sands is insignificant in comparison with clays, and hence the study on this effect had seldom been performed prior to the early 1980s. However, field tests for this effect have been actively carried out since it was investigated that penetration resistance of reformed sands increased with the lapse of time. Recently, the aging effect of sands has also been examined in laboratory testings. In this study, undrained static triaxial tests were performed to evaluate the effect on the Nak-dong River sands, with different .elative densities $(D_r)$, consolidation stress ratios $(K_c)$, and consolidation times. As a result of the tests, it was proved that the undrained cyclic shear strength $(R_f)$ increased with the aged time on the sands. The in situ range of Rf on the sands, which is applicable to the magnitude of earthquake in the Nak-dong River area, was proposed by using the test results.

Effect of Isochronic Aging on Transformation Behavior in Ti-50.85at%Ni Alloy (Ti-50.85atNi 합금의 변태거동 및 형상기억특성 미치는 시효처리의 영향)

  • Kim, J.I.;Sung, J.H.;Kim, Y.H.;Lee, J.H.;Miyazaki, S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Effect of isochronic aging on transformation behavior of Ti-50.85at%Ni alloy were investigated by differential scanning calorimeter (DSC). The martensitic transformation temperature increases with increasing annealing temperature until reaching a maximum, and then decreases with further increasing annealing temperature. This can be rationalized by interaction between the distribution of $Ti_3Ni_4$ precipitates and Ni content in the matrix. The R-phase transformation temperature increases with increasing annealing temperature until reaching a maximum, and then decreases with a further increase of annealing temperature. This is attributed to the change of Ni content in the matrix caused by precipitation of $Ti_3Ni_4$. The occurrence of the multiple-stage martensitic and R-phase transformation is attributed to precipitation-induced inhomogeneity of the matrix, both in terms of composition and of internal stress fields.

Precipitation Behavior of Al-Zn-Mg-Cu-(Sc) Alloy (Al-Zn-Mg-Cu-(Sc) 합금의 석출특성)

  • Choi, G.S.;Mun, H.J.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Scandium(Sc) in Al-Zn-Mg-Cu based Al alloy on precipitation phenomenon was compared to a 7001(Al-7.2%Zn-3.2%Mg-1.8%Cu) Al alloy. GP zone and ${\eta}^{\prime}$ phases were the main strengthening phases at low aging temperature under $100^{\circ}C$, but ${\eta}^{\prime}$ and $Al_3Sc$ phases were the main strengthening phases at high aging temperature above $1600^{\circ}C$ in Sc added 7000(Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr) Al alloy. With the addition of 0.1%Sc in 7000 Al alloy, the activation energy for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phase decreased compared to the 7001 Al alloy. This result indicates that the Sc accelerated the precipitation for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phases in 7000 Al alloy. Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr-0.1 Sc alloy has higher strength than 7001 Al alloy, which has high strength.

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel (P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석)

  • Kim, Bum-Joon;Kim, Moon-K;Dung, Hoang Tien;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.